I. Finding Roots of Quadratic Equations

a. The Standard Form of a quadratic equation is: $a x^{2}+b x+c=0$.
b. We can use the Quadratic Formula to solve equations in standard form:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

c. Discriminant - The radical portion of this formula $\sqrt{b^{2}-4 a c}$, determines the nature of the roots. This quantity under the radical $\operatorname{sign} b^{2}-4 a c$, is called the discriminant.

d. Three things may occur regarding the discriminant:
i. If $b^{2}-4 a c>0$

We can take the square root of this positive amount and there will be two different real answers (or roots) to the equation.
ii. If $b^{2}-4 a c<0$

We cannot take the square root of a negative number, so there will be no real roots.
iii. If $b^{2}-4 a c=0$

The amount under the radical is zero and since the square root of zero is zero, we will get only 1 distinct real root.

II. Examples

a. $x^{2}-6 x+9=0$
$a=1 \quad b=-6 \quad c=9$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$x=\frac{+6 \pm \sqrt{(-6)^{2}-4(1)(9)}}{2(1)}$
$x=\frac{6 \pm \sqrt{36-36}}{2}$

$x=\frac{6 \pm 0}{2}$
$x=\frac{6}{2}=3$ (There is only 1 real root.)
b. $x^{2}+3 x+1=0$

$$
a=1 \quad b=3 \quad c=1
$$

$x=\frac{-3 \pm \sqrt{5}}{2}$
$x=\frac{-3+\sqrt{5}}{2}$ and $x=\frac{-3-\sqrt{5}}{2}$
Since the discriminant is positive (it equals +5) there are two real roots.
c. $x^{2}+x+3=0$

$$
a=1 \quad b=1 \quad c=3
$$

$$
x=\frac{-1 \pm \sqrt{1-4(1)(3)}}{2(1)} \longleftarrow \quad \begin{aligned}
& \text { The Discriminant is negative. }
\end{aligned}
$$

$x=\frac{-1 \pm \sqrt{-11}}{2} \quad$ The discriminant is -11 . Since we cannot take the square root of a negative number we have no real roots.

III. Practice Problems

By examining the discriminant $=b^{2}-4 a c$, determine how many real roots, if any, the following quadratic equations have.

1. $x^{2}-4 x+4=0$
2. $x^{2}+4=0$
3. $x^{2}-2 x+4=0$
4. $x^{2}-4 x=0$
5. $5 r^{2}-3 r+2=0$
6. $7 x^{2}-10 x-5=0$
7. $x^{2}-4=0$
8. $25 t^{2}-10 t=-1$
9. $6 y^{2}-5 y=21$
10. $2 y^{2}-19 y=3$

Answers: Roots of Quadratic Equations

1. 1 real root
2. no real roots
3. no real roots
4. 2 real roots
5. no real roots
6. 2 real roots
7. 2 real roots
8. 1 real root
9. 2 real roots
10. 2 real roots
