Partial Fractions

A rational function, i.e. a quotient of polynomials: $f(x)=\frac{P(x)}{Q(x)}$ can be expressed as a sum of simpler fractions, called partial fractions.

This technique is used for rewriting problems so that they can be integrated. For example, the integral $\int \frac{x+7}{x^{2}-x-6} d x$ can be rewritten as $\int\left(\frac{2}{x-3}-\frac{1}{x+2}\right) d x$ using the method of partial fractions. This is then easily integrated as $2 \ln |x-3|-\ln |x+2|+C$.

1. If you have an improper rational function (the degree of the numerator is equal to or greater than the degree of the denominator) the preliminary step of long division is necessary: $Q(x) \sqrt{P(x)}$

$$
\text { Example: } \frac{x^{3}+4 x^{2}+3}{x^{2}+2 x+1}
$$

Long Division

Divide: $\frac{x+2}{\left.x^{2}+2 x+1\right)}$

$$
\begin{array}{r}
-\left(x^{3}+2 x^{2}+x\right) \\
2 x^{2}-x+3 \\
\frac{-\left(2 x^{2}+4 x+2\right)}{-5 x+1}
\end{array}
$$

Result:
$\frac{x^{3}+4 x^{2}+3}{x^{2}+2 x+1}=x+2+\frac{-5 x+1}{x^{2}+2 x+1}$
2. If you have a proper rational function (the degree of the numerator is less than the degree of the denominator) then you are ready to proceed to the step of partial fractions.

Partial Fractions

Step 1: Factor the denominator completely into a product of linear and/or irreducible quadratic factors with real coefficients.

Examples:
a) $\frac{4 x-1}{2 x^{2}-x-3}=\frac{4 x-1}{(x+1)(2 x-3)}$
b) $\frac{2 x^{3}-4 x-8}{\left(x^{2}-x\right)\left(x^{2}+4\right)}=\frac{2 x^{3}-4 x-8}{x(x-1)\left(x^{2}+4\right)}$

Step 2: Rewrite the original fraction into a series of partial fractions using the following forms:

CASE 1: The denominator $Q(x)$ is a product of distinct linear factors.
For each linear factor use one corresponding fraction of the form $\frac{A}{a x+b}$ where A is a constant to be determined.

Example: $\frac{4 x-1}{(x+1)(2 x-3)}=\frac{A}{x+1}+\frac{B}{2 x-3}$

CASE 2: $Q(x)$ is a product of linear factors, some of which are repeated.
For a linear factor that is repeated n times write n corresponding partial fractions of the form:
$\frac{A_{1}}{a x+b}+\frac{A_{2}}{(a x+b)^{2}}+\ldots+\frac{A_{n}}{(a x+b)^{n}}$ where $A_{1}, A_{2}, \ldots A_{n}$ are constants
Example: $\frac{3 x^{2}-3}{(x-1)^{3}}=\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{(x-1)^{3}}$

CASE 3: $Q(x)$ contains irreducible quadratic factors, none of which is repeated.
For each quadratic factor use one corresponding fraction of the form $\frac{A x+B}{a x^{2}+b x+c}$ where A, B, C, and D are constants to be determined.
CASE 4: $Q(x)$ contains a repeated irreducible quadratic factor.
For a quadratic factor that is repeated n times write n corresponding partial fractions of the form:
$\frac{A_{1} x+B_{1}}{a x^{2}+b x+c}+\frac{A_{2} x+B_{2}}{\left(a x^{2}+b x+c\right)^{2}}+\ldots+\frac{A_{n} x+B_{n}}{\left(a x^{2}+b x+c\right)^{n}}$ where $A_{1}, A_{2}, \ldots A_{n} a n d B_{1}, B_{2}, \ldots B_{n}$ are constants

Step 3: Determine the constants A, B, C, D, etc. using one of the following 2 methods.

METHOD \#1: Solve by Equating Corresponding Coefficients

$$
\text { Example: } \frac{8 x^{3}+13 x}{\left(x^{2}+2\right)^{2}}=\frac{A x+B}{\left(x^{2}+2\right)}+\frac{C x+D}{\left(x^{2}+2\right)^{2}}
$$

1. Clear all fractions by multiplying both sides by the least common denominator (LCD) $\left(x^{2}+2\right)\left(x^{2}+2\right)$:

$$
8 x^{3}+13 x=(A x+B)\left(x^{2}+2\right)+(C x+D)
$$

2. Remove parentheses and collect like terms on the right side of equation:

$$
\begin{aligned}
& 8 x^{3}+13 x=A x^{3}+2 A x+B x^{2}+2 B+C x+D \\
& 8 x^{3}+13 x=A x^{3}+B x^{2}+(2 A+C) x+2 B+D
\end{aligned}
$$

3. Set corresponding coefficients equal and solve for constants A, B, C, and D :

$$
\begin{array}{ll}
8=A & \text { Coefficients of } x^{3} \\
0=B & \text { Coefficients of } x^{2} \\
13=2 A+C & \text { Coefficients of } x \\
0=2 B+D & \text { Constant terms }
\end{array}
$$

Solving the above yields: $\mathrm{A}=8, \mathrm{~B}=0, \mathrm{C}=-3, \mathrm{D}=0$

$$
\text { Therefore: } \frac{8 x^{3}+13 x}{\left(x^{2}+2\right)^{2}}=\frac{8 x}{\left(x^{2}+2\right)}+\frac{-3 x}{\left(x^{2}+2\right)^{2}}
$$

Method \#2: Solve by Substitution:

$$
\text { Example: } \frac{x-8}{(x+2)(x-3)}=\frac{A}{(x+2)}+\frac{B}{(x-3)}
$$

1. Clear all fractions by multiplying both sides by the $\operatorname{LCD}(x+2)(x-3)$:

$$
x-8=A(x-3)+B(x+2)
$$

2. Substitute in the values of x that make a factor on the right side of the above equation equal to 0 and solve the resulting equations:

$$
\begin{aligned}
& x=3 \\
& 3-8=A(3-3)+B(3+2) \\
& -5=0+5 B \\
& -1=B \\
& x=-2 \\
& -2-8=A(-2-3)+B(-2+2) \\
& -10=-5 A+0 \\
& 2=A
\end{aligned}
$$

Therefore: $\frac{x-8}{(x+2)(x-3)}=\frac{2}{(x+2)}+\frac{-1}{(x-3)}$

Additional example using method \#2:
$\frac{2 x^{3}-4 x-8}{x(x-1)\left(x^{2}+4\right)}=\frac{A}{x}+\frac{B}{(x-1)}+\frac{C x+D}{\left(x^{2}+4\right)}$

1. Clear the equation of fractions by multiplying by the $\operatorname{LCD}(x+2)(x-3)$

$$
2 x^{3}-4 x-8=A(x-1)\left(x^{2}+4\right)+B x\left(x^{2}+4\right)+(C x+D) x(x-1)
$$

2. Substitute in values of x that make a factor on the right side equal zero.

$$
\begin{array}{rlrl}
x=1 & 2-4-8 & =0+B(1)(5)+0 \\
-10 & =5 B \\
-2 & =B \\
& & \\
x=0 & 0-0-8 & =A(-1)(4)+0+0 \\
-8 & =-4 A \\
& 2 & =A
\end{array}
$$

3. Pick any other convenient values for x and substitute into the equation to find C and D. Set $A=2$ and $B=-2$
$2 x^{3}-4 x-8=A(x-1)\left(x^{2}+4\right)+B x\left(x^{2}+4\right)+(C x+D) x(x-1)$
Let $x=-1$:

$$
\begin{aligned}
-2+4-8 & =2(-2)(5)+(-2)(-1)(5)+(-C+D)(-1)(-2) \\
-6 & =-10+2(-C+D) \\
2 & =-C+D
\end{aligned}
$$

Let $x=2$:

$$
\begin{aligned}
16-8-8 & =2(1)(8)+(-2)(2)(8)+(2 C+D)(2)(1) \\
0 & =-16+2(2 C+D) \\
8 & =2 C+D
\end{aligned}
$$

Solve simultaneously:

$$
\begin{aligned}
& 2=-C+D \\
& 8=2 C+D
\end{aligned} \longrightarrow \begin{aligned}
& C=2 \\
& D=4
\end{aligned}
$$

Therefore: $\frac{2 x^{3}-4 x-8}{x(x-1)\left(x^{2}+4\right)}=\frac{2}{x}+\frac{-2}{(x-1)}+\frac{2 x+4}{\left(x^{2}+4\right)}$

Using Partial Fractions Technique to Evaluate an Integral:

Example: Evaluate the following indefinite integral.

$$
\int \frac{x^{3}+4 x^{2}+3}{x^{2}+2 x+1} d x
$$

Solution:

Change the improper fraction to a polynomial plus a proper fraction using long division.

$$
\int \frac{x^{3}+4 x^{2}+3}{x^{2}+2 x+1} d x=\int\left(x+2+\frac{-5 x+1}{x^{2}+2 x+1}\right) d x
$$

Write the proper fraction as partial fractions and solve for A \& B. Either method would work. This example demonstrates method \#1.

$$
\begin{aligned}
\frac{-5 x+1}{x^{2}+2 x+1} & =\frac{-5 x+1}{(x+1)^{2}}=\frac{A}{x+1}+\frac{B}{(x+1)^{2}} \\
-5 x+1 & =A(x+1)+B \\
-5 x+1 & =A x+A+B \\
-5 & =A \longleftarrow \text { Coefficients of } x . \\
1 & =A+B \longleftarrow \text { Constant terms. }
\end{aligned}
$$

Therefore $B=6$.

Write the integral with partial fractions and then evaluate.

$$
\begin{aligned}
\int \frac{x^{3}+4 x^{2}+3}{x^{2}+2 x+1} d x & =\int\left(x+2+\frac{-5}{x+1}+\frac{6}{(x+1)^{2}}\right) d x \\
& =\frac{x^{2}}{2}+2 x-5 \ln |x+1|-\frac{6}{x+1}+C
\end{aligned}
$$

Practice Problems

Write the following as partial fractions:

1. $\frac{x}{x^{2}-4 x-5}$
2. $\frac{2 x+1}{x^{2}+2 x+1}$
3. $\frac{1}{x^{3}+x^{2}+x}$
4. $\frac{x+3}{x^{3}-4 x}$

Evaluate the following integrals:
5. $\int \frac{d x}{x^{2}-4}$
6. $\int \frac{x+1}{x^{3}+x^{2}-6 x} d x$
7. $\int \frac{2 x^{3}}{\left(x^{2}+1\right)^{2}} d x$
8. $\int \frac{x^{4}-x^{3}-x-1}{x^{3}-x^{2}} d x$

Solutions to practice problems:

1. $\frac{x}{x^{2}-4 x-5}=\frac{x}{(x-5)(x+1)}=\frac{A}{x-5}+\frac{B}{x+1}=\frac{5}{6(x-5)}+\frac{1}{6(x+1)}$
2. $\frac{2 x+1}{x^{2}+2 x+1}=\frac{2 x+1}{(x+1)^{2}}=\frac{A}{x+1}+\frac{B}{(x+1)^{2}}=\frac{2}{x+1}-\frac{1}{(x-1)^{2}}$
3. $\frac{1}{x^{3}+x^{2}+x}=\frac{1}{x\left(x^{2}+x+1\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+x+1}=\quad \frac{1}{x}-\frac{x+1}{x^{2}+x+1}$
4. $\frac{x+3}{x^{3}-4 x}=\frac{x+3}{x(x+2)(x-2)}=\frac{A}{x}+\frac{B}{x+2}+\frac{C}{x-2}=\quad \frac{-3}{4 x}+\frac{1}{8(x+2)}+\frac{5}{8(x-2)}$
5.

$$
\begin{array}{r}
\int \frac{d x}{x^{2}-4}=\frac{1}{4} \int\left(\frac{1}{x-2}-\frac{1}{x+2}\right) d x=\frac{\frac{1}{4}[\ln |x-2|-\ln |x+2|]+C}{} \frac{\frac{1}{4} \ln \left|\frac{x-2}{x+2}\right|+C}{}
\end{array}
$$

6.

$$
\begin{array}{r}
\int \frac{x+1}{x^{3}+x^{2}-6 x} d x=\frac{\int\left(\frac{-1}{6 x}+\frac{3}{10(x-2)}-\frac{2}{15(x+3)}\right) d x=}{} \begin{array}{|}
\frac{-1}{6} \ln |x|+\frac{3}{10} \ln |x-2|-\frac{2}{15} \ln |x+3|+C
\end{array} .
\end{array}
$$

7.

$\int \frac{2 x^{3}}{\left(x^{2}+1\right)^{2}} d x=\int\left(\frac{2 x}{x^{2}+1}+\frac{-2 x}{\left(x^{2}+1\right)^{2}}\right) d x=$
8.

$$
\begin{array}{r}
\int \frac{x^{4}-x^{3}-x-1}{x^{3}-x^{2}} d x=\quad \int\left(x-\frac{x+1}{x^{2}(x-1)}\right) d x=\int\left(x+\frac{2}{x}+\frac{1}{x^{2}}-\frac{2}{x-1}\right) d x= \\
\frac{x^{2}}{2}+2 \ln |x|-\frac{1}{x}-2 \ln |x-1|+C \\
\hline
\end{array}
$$

