Polar Coordinates

Definitions

Polar Coordinate System

Polar to Cartesian
Conversion
$x=r \cos \theta$
$y=r \sin \theta$

Cartesian Coordinate System

Cartesian to Polar
Conversion

$$
\begin{gathered}
r^{2}=x^{2}+y^{2} \\
\tan \theta=\frac{y}{x}
\end{gathered}
$$

Converting between Cartesian and Polar

$$
\begin{gathered}
\cos \theta=\frac{x}{r} \rightarrow x=r \cos \theta \\
\sin \theta=\frac{y}{r} \rightarrow y=r \sin \theta \\
r^{2}=x^{2}+y^{2} \quad(\text { Pyythagorean }) \\
\tan \theta=\frac{y}{x}
\end{gathered}
$$

Tangents to Polar Curves

$$
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d y}{d \theta}}=\frac{\frac{d r}{d \theta} \sin \theta+r \cos \theta}{\frac{d r}{d \theta} \cos \theta-r \sin \theta}
$$

Found using $x=r \cos \theta$ and $y=r \sin \theta$

Problems

I. Write the Cartesian equations from the given Polar equations
a) $r=3 \sin \theta$
b) $r^{2}=\sin 2 \theta$
c) $r^{2}=\theta$
$r^{2}=3 r \sin \theta$
$r^{2}=2 \sin \theta \cos \theta$
$\tan \left(r^{2}\right)=\tan \theta$
$x^{2}+y^{2}=3 y$
$x^{2}+y^{2}-3 y=0$
$r^{4}=2 r \sin \theta r \cos \theta$
$\tan \left(x^{2}+y^{2}\right)=\frac{y}{x}$
$x^{2}+\left(y-\frac{3}{2}\right)^{2}=\frac{9}{4}$
$\left(x^{2}+y^{2}\right)^{2}=2 y x$
II. Write the Polar equations from the given Cartesian equations
a) $x^{2}=4 y$
b) $x^{2}-y^{2}=1$
c) $y=2 x-1$
$r^{2} \cos ^{2} \theta=4 r \sin \theta$
$r^{2}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)=1$
$r \sin \theta=2 r \cos \theta-1$
$r \cos ^{2} \theta=4 \sin \theta$
$r^{2}(\cos 2 \theta)=1$
$r(2 \cos \theta-\sin \theta)=1$
$r=\frac{4 \sin \theta}{\cos ^{2} \theta}$
$r^{2}=\sec 2 \theta$
$r=\frac{1}{(2 \cos \theta-\sin \theta)}$
$r=4 \tan \theta \sec \theta$

Problems (continued)

III. Sketch the Curve by first converting to Cartesian
a) $r=2(1-\sin \theta) \quad$ (Cardioid)

θ	$\sin \theta$	$2(1-\sin \theta)$
0	0	2
$\frac{\pi}{2}$	1	0
π	0	2
$\frac{3 \pi}{2}$	-1	4
2π	0	2

b) $r=\theta$

θ	r
0	0
$\frac{\pi}{2}$	$\frac{\pi}{2}$
π	π
$\frac{3 \pi}{2}$	$\frac{3 \pi}{2}$
2π	2π

c) $r=\sin (2 \theta)$

θ	2θ	$\sin 2 \theta$
0	0	0
$\frac{\pi}{4}$	$\frac{\pi}{2}$	1
$\frac{\pi}{2}$	π	0
$\frac{3 \pi}{4}$	$\frac{3 \pi}{2}$	-1
π	2π	0
$\frac{5 \pi}{4}$	$\frac{5 \pi}{2}$	1
$\frac{3 \pi}{2}$	3π	0
$\frac{7 \pi}{4}$	$\frac{7 \pi}{4}$	-1
2π	4π	0

c) $r=2 \cos (3 \theta)$

θ	3θ	$2 \cos (3 \theta)$
0	0	1
$\frac{\pi}{6}$	$\frac{\pi}{2}$	0
$\frac{\pi}{3}$	π	-1
$\frac{\pi}{2}$	$\frac{3 \pi}{2}$	0
$\frac{2 \pi}{3}$	2π	1
$\frac{5 \pi}{6}$	$\frac{5 \pi}{2}$	0
π	3π	-1

Problems (continued)

IV. Find the slope of the tangent line to the following polar curve

$$
r=3 \cos \theta \quad\left(\text { at } \theta=\frac{\pi}{3}\right)
$$

Given:

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{\frac{d r}{d \theta} \sin \theta+r \cos \theta}{\frac{d r}{d \theta} \cos \theta-r \sin \theta} \\
& \frac{d y}{d x}=\frac{-3 \sin \theta \sin \theta+3 \cos \theta \cos \theta}{-3 \sin \theta \cos \theta-3 \cos \theta \sin \theta}=\frac{3\left(\cos ^{2} \theta-\sin ^{2} \theta\right)}{-3(2 \sin \theta \cos \theta)}=\frac{-\cos 2 \theta}{\sin 2 \theta}=-\cot 2 \theta \\
& \frac{d y}{d x}\left(\text { at } \theta=\frac{\pi}{3}\right)=-\cot \left(\frac{2 \pi}{3}\right)=\frac{1}{\sqrt{3}}
\end{aligned}
$$

Alternate Approach:
$r=3 \cos \theta \quad\left(\right.$ at $\left.\theta=\frac{\pi}{3}\right)$
Then: $x=r \cos \theta=(3 \cos \theta) \cos \theta=3 \cos ^{2} \theta$

$$
y=r \sin \theta=(3 \cos \theta) \sin \theta
$$

$\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d y}{d \theta}}=\frac{\left(3 \cos ^{2} \theta-3 \sin ^{2} \theta\right)}{-(6 \sin \theta \cos \theta)}=\frac{-\cos 2 \theta}{\sin 2 \theta}=-\cot 2 \theta$
$\frac{d y}{d x}\left(\right.$ at $\left.\theta=\frac{\pi}{3}\right)=-\cot \left(\frac{2 \pi}{3}\right)=\frac{1}{\sqrt{3}}$

