## First-Order Differential Equations



| TYPE | FORMAT | METHOD |
| :--- | :--- | :--- |
| Separable | $g(y) d y=h(x) d x$ | 1. Integrate both sides and the equation becomes <br> $G(y)=H(x)+C$ <br> 2. Solve the equation explicitly for $y$ if possible. |

## General Example:

Solve $3 y y^{\prime}=\frac{1+3 x^{2}}{y-2} ; y(0)=1 \quad$ (separate variables)
$\therefore \frac{d y}{d x}=\frac{1+3 x^{2}}{3 y(y-2)}=\frac{1+3 x^{2}}{3 y^{2}-6 y} \quad \therefore \quad\left(3 y^{2}-6 y\right) d y=\left(1+3 x^{2}\right) d x \quad$ (now integrate both sides)
Thus, $y^{3}-3 y^{2}=x+x^{3}+C \quad$ (now find the value of C using $y(0)=1, \quad[i . e ., \quad x=0, y=1]$ )
$1^{3}-3 \cdot 1^{2}=0+0^{3}+C$ yields $C=-2$
Hence, $y^{3}-3 y^{2}=x^{3}+x+2$, which cannot be solved explicitly for $y$.

Now you trv one.

Solve $\frac{d y}{d x}=\left(1+y^{2}\right) \tan x ; y(0)=\sqrt{3}$

| TYPE | FORMAT | METHOD |
| :--- | :--- | :--- |
| Linear | $\frac{d y}{d x}+p(x) y=q(x)$ | 1. Find the Integrating Factor: $\mu(x)=e^{\int} p(x) d x$ <br> 2. The equation becomes $\mu(x) \cdot y=\int \mu(x) \cdot q(x) d x$ <br> 3. Perform the integration and solve for y by diving <br> both sides of the equation by $\mu(x)$. |

## General Example:

Solve $\frac{d y}{d x}=\frac{y}{x}+2 x+1$ with $y(0)=e$. First put into "linear form" $\therefore \frac{d y}{d x}-\frac{1}{x} \cdot y=2 x+1$.

Find the integration factor, $\mu(x)=e^{\int p(x) d x}=e^{-\int \frac{1}{x} d x}=e^{-\ln x}=x^{-1}$
Therefore, $x^{-1} \cdot \frac{d y}{d x}-\left(x^{-1}\right) \cdot \frac{1}{x} y=x^{-1} \cdot(2 x+1)$ or $x^{-1} \frac{d y}{d x}-x^{-2} y=2+x^{-1}$
Note that, using the product rule, $d\left(x^{-1} y\right)=x^{-1} \frac{d y}{d x}-x^{-2} y$, so that $d\left(x^{-1} y\right)=2+x^{-1} d x$
Integrating both sides yields $x^{-1} y=2 x+\ln |x|+c$ and, solving for $y, y=2 x^{2}+x \ln |x|+C x$
Using initial conditions to solve for C : $0=2 e^{2}+e \ln |e|+e C=2 e^{2}+e+e C=0$, so $C=-2 e-1$
Hence, $y=2 x^{2}+x \ln |x|-2 e-1$.

Now you
try one.
Solve $(x+y+1) d x-d y=0$;


General Example: Solve $\left(2 x y-\sec ^{2} x\right)+\left(x^{2}+2 y\right) d y=0 \quad$ [given in proper form]
$\therefore$ take partial derivatives of each side: $\frac{\partial\left(2 x y-\sec ^{2} x\right)}{\partial y}=2 x$ and $\frac{\partial\left(x^{2}+2 y\right)}{\partial x}=2 x$.
Since the two partial derivatives are equal, the differential equation is "exact". Hence,

1. $F(x, y)=\int\left(2 x y-\sec ^{2} x\right) d x=x^{2} y-\tan x+g(y)=C$
2. $\frac{\partial\left(x^{2}-\tan x+g(y)\right)}{d y}=\not x^{2}+g^{\prime}(y)=x^{2}+2 y$

$$
\therefore \quad g(y)=\int 2 y d y=y^{2}
$$

3. Hence, $F(x, y)=x^{2} y-\tan x+y^{2}=C$ (implicit solution - cannot be solved for y)

Given initial condition $y(0)=5,0^{2} \cdot y-\tan 0+5^{2}=C$ yields $C=25$.
$\therefore x^{2} y-\tan x+y^{2}=25$.
Now you trv one.
Solve $\left[e^{x}(y-x)\right] d t+\left(1+e^{x}\right) d y=0 ; \quad y(0)=2$

| TYPE | FORMAT | METHOD |
| :--- | :--- | :--- |
| Homogeneous <br> Substitution | $\frac{d y}{d x}=g\left(\frac{y}{x}\right)$ | 1. Let $v=\frac{y}{x}$ and rewrite the equation as $v+x \frac{d y}{d x}=g(v)$ <br> 2. This equations is separable. Use that method to solve, then <br> substitute $\frac{y}{x}$ for $v$ in the solution. |

General Example: Solve $\frac{d y}{d x}=\frac{x^{2}+x y+y^{2}}{x^{2}}$. First show this is homogeneous.
$\frac{d y}{d x}=\frac{x^{2}}{x^{2}}+\frac{x y}{x^{2}}+\frac{y^{2}}{x^{2}}=1+\left(\frac{y}{x}\right)+\left(\frac{y}{x}\right)^{2}=1+v+v^{2}$ where $v=\frac{y}{x}$
Since $v=\frac{y}{x}, y=v x$ and, taking the derivative of both sides, $\frac{d y}{d x}=v+x \frac{d v}{d x}$ (to be substituted)
$\therefore \frac{d y}{d x}=v+x \frac{d v}{d x}=1+v+v^{2} \quad$ which can be separated
$\therefore\left[\frac{1}{1+v^{2}}\right] d v=\left[\frac{1}{x}\right] d x$ and integrating both sides we get $v=\tan [\ln (x)+C]$
$\therefore \frac{y}{x}=\tan [\ln (x)+C]$ so $y=x \tan [\ln (x)+C]$.

Now you
trv one.
Solve: Find the implicit solution for $\frac{d y}{d x}=\frac{4 y-3 x}{2 x-y}$
Hints:

1. The integration will require partial fractions.
2. Begin by multiplying each term by $\frac{1}{x}$.

| TYPE | FORMAT | METHOD |
| :--- | :--- | :--- |
| Bernoulli <br> Substitution | $\frac{d y}{d x}+p(x) y=q(x) y^{n}$ | 1. Let $v=y^{1-n}$ and rewrite the equation as $\left(\frac{1}{1-n}\right) \frac{d v}{d x}+$ <br> $p(x) v=q(x)$ <br> 2. This equation is linear. Use that method to solve, and then <br> substitute $y^{1-n}$ for $v$ in the solution. |

General Example: Solve $\frac{d y}{d x}=x y^{-2}-2 y$
First put this into the "form" of a linear equation: $\frac{d y}{d x}+2 y=x y^{-2}$
This is almost linear. The problem lies with the $y^{-2}$.
Begin: $\quad v=y^{1-n}=y^{1-(-2)}=y^{3} \quad \therefore \quad v=y^{3}$ is one substitution to be made, and $v=y^{3} \rightarrow \frac{d v}{d x}=3 y^{2} \frac{d y}{d x} \therefore \frac{d y}{d x}=\frac{1}{3 y^{2}} \frac{d v}{d x}$ is the second substitution to be made.

So, $\frac{1}{3 y^{2}} \frac{d v}{d x}+2 y=x y^{-2}$. Rearranging, we get the following linear equation to solve: $\frac{d v}{d x}+6 v=3 x$.
$u(x)=e^{\int 6 d x}=e^{6 x} \quad \therefore \frac{d v}{d x} \cdot e^{6 x}+6 v \cdot e^{6 x}=3 x \cdot e^{6 x}$, so, $\int \frac{d\left(v e^{6 x}\right)}{d x}=3 \int x e^{6 x} d x$ and
integrating by parts (do this now) you get $v e^{6 x}=\frac{1}{2} x e^{6 x}-\frac{1}{12} e^{6 x}+C$
$\therefore \quad v=\frac{1}{2} x-\frac{1}{12}+C e^{-6 x} \quad \therefore \quad y^{3}=\frac{1}{2} x-\frac{1}{12}+C e^{-6 x} \quad \therefore \quad y=\sqrt[3]{\frac{1}{2} x-\frac{1}{12}+C e^{-6 x}}$.

Now you
try one.
Solve: $\frac{d y}{d x}+\frac{y}{x}=x^{2} y^{2}$

## SOLUTIONS

A. $y=\tan \left[\frac{\pi}{3}-\ln |\cos x|\right]$
B. $y=-(x+2)+C e^{x}$
C. $y=\frac{x e^{x}-e^{x}+5}{1+e^{x}}$
D. Type equation here.
E. $y=\frac{2}{2 c x-x^{3}}$

