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To determine the general solution to homogeneous second order differential equation: 

0)(')("  yxqyxpy
 

 

Find two linearly independent solutions 1y and 2y using one of the methods below. 

 

Note that 1y and 2y are linearly independent if there exists an x0 such that 
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The general solution is )()()( 21 xyCxyCxy   where 1C and 2C are arbitrary constants. 

  

 

METHODS FOR FINDING TWO LINEARLY INDEPENDENT SOLUTIONS 

Method Restrictions Procedure 
 
Reduction of 
order 

Given one non-

trivial solution  xf  

to 
0)(')("  yxqyxpy  

Either: 
1. Set )()()( xfxvxy  for some unknown )(xv and 

substitute into differential equation. 

2. Now we have a separable equation in v  and v  . Use the 

Integrating Factor Method to get v  and then integrate to 
get v . 

3. Substitute v back into )()()( xfxvxy   to get the 

second linearly independent solution. 
Or: 

  






dx
xf

e
xfxy

dxxp
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)(

)()(  

where )(xy is the second linearly independent solution. 

Characteristic 
(Auxiliary) 
Equation  

02  cbrar  

0 cyybya

where a, b and c are 

constants 

1. Find solutions 1r and 2r to the characteristic (auxiliary) 

equation: 02  cbrar  
2. The two linearly independent solutions are: 

a. If 1r  and 2r are two real, distinct roots of characteristic 

equation : 
xr

ey 1

1  and 
xr

ey 2

2    

b. If 1r  = 2r  then 
xr

ey 1

1  and 
xr

xey 1

2  . 

c. If 1r and 2r are complex, conjugate solutions: i   

then xey x  cos1   and xey x  sin2    

 

Homogeneous Second Order 
Differential Equations 
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METHODS FOR FINDING TWO LINEARLY INDEPENDENT SOLUTIONS (cont.) 

Method Restrictions Procedure 
Variable 
Coefficients,  
(Cauchy-
Euler) 

02  cyybxyax

0x

 

1. Substitute 
mxy   into the differential equation. It 

simplifies to 0)(2  cmabam . If m is a solution to 

the characteristic equation then mxy   is a solution to the 

differential equation and  

a. If 1m  and 2m are two real, distinct roots of 

characteristic equation then 
1

1

m
xy   and 2

2

m
xy    

b. If 21 mm   then 
mxy 1  and xxy m ln2  . 

c. If 1m  and 2m are complex, conjugate solutions i 

then  xxy lncos1  and  xxy lnsin2   

 

Example #1.  Solve the differential equation: 032 2  yytyt ,  given that 1

1 )(  tty

is a solution. 
 
Solution: 

Let 
1

1 )()()(  tvtytvty  
21

11 )()()()()(   tvtvtytvtytvty  
321

111 22)()()()(2)()()(   vttvtvtytvtytvtytvty  

 

 032 2 yytyt
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Let   uv    so  uv    then 
 

 032 vvt
    

032  uut  

0
2

3
 u

t
u     (First order linear equation) 

2
5

2
3

5

2
tvtu  , at this point we can ignore the constant coefficients so take 2

5

tv   

 

Substitute v back into )()()( 1 tytvty   to get the second linearly independent solution. 

 
 

 
The general solution is: 
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1

1
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tCtCy

yCyCy







  

2
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12
5

12 tttyvy  
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Example #2. Solve the differential equation: 02  yyy  

 
Solution: 

Characteristic equation:   0122  rr  
      01

2
r  

    1,1  rr     (Repeated roots) 

    xeCy 11   and xxeCy 22   

 

So the general solution is:  
xx xeCeCy 21   

 
 

Example #3. Solve the differential equation: 0)(4)(4)(2  tytyttyt , given that 

2)1( y , 11)1( y  

Solution: The substitution: mty  yields to the characteristic equation: 

  04)14(2  mm  

  
0)1)(4(

0452





mm

mm
 

  4m  or 1m  two distinct, real solutions 
 

So the solutions are: 4t and t . The general solution is  
 

tCtCy 2

4

1   

 
Use 2)1( y , 11)1( y to find the solution to the initial value problem: 

2)1( y     221  CC  

11)1( y  114 21  CC  

Solving the system of linear equations gives us  31 C  and 12 C  

So the solution to the Initial Value Problem is 
43tty   

 
 
 
 
 
 
 
 
You try it: 

1. Given that 3
2

1 )(
x

exy  is a solution of the following differential equation

04129  yyy . Use the reduction of order to find a second solution. 

       (Hint:  0v  implies 1v ) 
 
Find the general solution of the given second-order differential equations: 

2. 023  yyy  

3. 0452  yyxyx  
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Solutions: 

#1: 3
2

2

x

xey   

#2: 












































xCxCey
x

3

2
sin

3

2
cos 21

3  

#3: xxCxCy ln2

2

2

1

   


