To determine the general solution to homogeneous second order differential equation:

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Find two linearly independent solutions y_{1} and y_{2} using one of the methods below.
Note that y_{1} and y_{2} are linearly independent if there exists an x_{0} such that Wronskian

$$
W\left(y_{1}, y_{2}\right)\left(x_{0}\right)=\operatorname{det}\left|\begin{array}{ll}
y_{1}\left(x_{0}\right) & y_{2}\left(x_{0}\right) \\
y_{1}^{\prime}\left(x_{0}\right) & y_{2}^{\prime}\left(x_{0}\right)
\end{array}\right|=y_{1}\left(x_{0}\right) y_{2}^{\prime}\left(x_{0}\right)-y_{2}\left(x_{0}\right) y_{1}^{\prime}\left(x_{0}\right) \neq 0
$$

The general solution is $y(x)=C_{1} y(x)+C_{2} y(x)$ where C_{1} and C_{2} are arbitrary constants.

METHODS FOR FINDING TWO LINEARLY INDEPENDENT SOLUTIONS		
Method	Restrictions	Procedure
Reduction of order	Given one nontrivial solution $f(x)$ to $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$	Either: 1. Set $y(x)=v(x) \cdot f(x)$ for some unknown $v(x)$ and substitute into differential equation. 2. Now we have a separable equation in v^{\prime} and $v^{\prime \prime}$. Use the Integrating Factor Method to get v^{\prime} and then integrate to get v. 3. Substitute v back into $y(x)=v(x) \cdot f(x)$ to get the second linearly independent solution. Or: $y(x)=f(x) \cdot \int \frac{e^{-\int p(x) d x}}{[f(x)]^{2}} d x$ where $y(x)$ is the second linearly independent solution.
$\begin{aligned} & \text { Characteristic } \\ & \text { (Auxiliary) } \\ & \text { Equation } \\ & a r^{2}+b r+c=0 \end{aligned}$	$a y^{\prime \prime}+b y^{\prime}+c y=0$ where a, b and c are constants	1. Find solutions r_{1} and r_{2} to the characteristic (auxiliary) equation: $a r^{2}+b r+c=0$ 2. The two linearly independent solutions are: a. If r_{1} and r_{2} are two real, distinct roots of characteristic equation : $y_{1}=e^{r_{1} x}$ and $y_{2}=e^{r_{2} x}$ b. If $r_{1}=r_{2}$ then $y_{1}=e^{r_{1} x}$ and $y_{2}=x e^{r_{1} x}$. c. If r_{1} and r_{2} are complex, conjugate solutions: $\alpha \pm \beta i$ then $y_{1}=e^{\alpha x} \cos \beta x$ and $y_{2}=e^{\alpha x} \sin \beta x$

METHODS FOR FINDING TWO LINEARLY INDEPENDENT SOLUTIONS (cont.)

Method	Restrictions	Procedure
Variable Coefficients, (CauchyEuler)	$\begin{aligned} & a x^{2} y^{\prime \prime}+b x y^{\prime}+c y=0 \\ & x>0 \end{aligned}$	1. Substitute $y=x^{m}$ into the differential equation. It simplifies to $a m^{2}+(b-a) m+c=0$. If m is a solution to the characteristic equation then $y=x^{m}$ is a solution to the differential equation and a. If m_{1} and m_{2} are two real, distinct roots of characteristic equation then $y_{1}=x^{m_{1}}$ and $y_{2}=x^{m_{2}}$ b. If $m_{1}=m_{2}$ then $y_{1}=x^{m}$ and $y_{2}=x^{m} \ln x$. c. If m_{1} and m_{2} are complex, conjugate solutions $\alpha \pm \beta i$ then $y_{1}=x^{\alpha} \cos (\beta \ln x)$ and $y 2=x^{\alpha} \sin (\beta \ln x)$

Example \#1. Solve the differential equation: $2 t^{2} y^{\prime \prime}+t y^{\prime}-3 y=0$, given that $y_{1}(t)=t^{-1}$ is a solution.

Solution:

$$
\begin{aligned}
& \text { Let } \begin{array}{l}
y(t)=v(t) \cdot y_{1}(t)=v \cdot t^{-1} \\
\quad y^{\prime}(t)=v^{\prime}(t) \cdot y_{1}(t)+v(t) \cdot y_{1}^{\prime}(t)=v^{\prime} \cdot t^{-1}-v \cdot t^{-2} \\
\quad y^{\prime \prime}(t)=v^{\prime \prime}(t) \cdot y_{1}(t)+2 v^{\prime}(t) \cdot y_{1}^{\prime}(t)+v(t) \cdot y^{\prime \prime}(t)_{1}=v^{\prime \prime} \cdot t^{-1}-2 v^{\prime} \cdot t^{-2}+2 v t^{-3} \\
2 t^{2} y^{\prime \prime}+t y^{\prime}-3 y=0 \Rightarrow \\
2 t^{2}\left(v^{\prime \prime} \cdot t^{-1}-2 v^{\prime} \cdot t^{-2}+2 v t^{-3}\right)+t\left(v^{\prime} \cdot t^{-1}-v \cdot t^{-2}\right)-3\left(v \cdot t^{-1}\right)=0 \\
2 t v^{\prime \prime}-4 v^{\prime}+4 v t^{-1}+v^{\prime}-v t^{-1}-3 v t^{-1}=0 \\
2 t v^{\prime \prime}-3 v^{\prime}=0
\end{array}
\end{aligned}
$$

Let $v^{\prime}=u$ so $v^{\prime \prime}=u^{\prime}$ then
$2 t v^{\prime \prime}-3 v^{\prime}=0 \Rightarrow 2 t u^{\prime}-3 u=0$
$u^{\prime}-\frac{3}{2 t} u=0 \quad$ (First order linear equation)
$u=t^{3 / 2} \Rightarrow v=\frac{2}{5} t^{5 / 2}$, at this point we can ignore the constant coefficients so take $v=t^{5 / 2}$
Substitute v back into $y(t)=v(t) \cdot y_{1}(t)$ to get the second linearly independent solution.

$$
y_{2}=v \cdot y_{1}=t^{5 / 2} \cdot t^{-1}=t^{3 / 2}
$$

The general solution is:

$$
\begin{aligned}
& y=C_{1} y_{1}+C_{2} y_{2} \\
& y=C_{1} t^{-1}+C_{2} t^{3 / 2}
\end{aligned}
$$

Example \#2. Solve the differential equation: $y^{\prime \prime}-2 y^{\prime}+y=0$

Solution:

Characteristic equation:

$$
\begin{aligned}
& r^{2}-2 r+1=0 \\
& (r-1)^{2}=0 \\
& r=1, r=1 \quad \text { (Repeated roots) } \\
& \Rightarrow y_{1}=C_{1} e^{x} \text { and } y_{2}=C_{2} x e^{x}
\end{aligned}
$$

So the general solution is: $\quad y=C_{1} e^{x}+C_{2} x e^{x}$

Example \#3. Solve the differential equation: $t^{2} y^{\prime \prime}(t)-4 t y^{\prime}(t)+4 y(t)=0$, given that $y(1)=-2, y^{\prime}(1)=-11$
Solution: The substitution: $y=t^{m}$ yields to the characteristic equation:

$$
\begin{aligned}
& m^{2}+(-4-1) m+4=0 \\
& m^{2}-5 m+4=0 \\
& (m-4)(m-1)=0 \\
& m=4 \text { or } m=1 \text { two distinct, real solutions }
\end{aligned}
$$

So the solutions are: t^{4} and t. The general solution is

$$
y=C_{1} t^{4}+C_{2} t
$$

Use $y(1)=-2, y^{\prime}(1)=-11$ to find the solution to the initial value problem:

$$
\begin{aligned}
& y(1)=-2 \Rightarrow C_{1}+C_{2}=-2 \\
& y^{\prime}(1)=-11 \Rightarrow 4 C_{1}+C_{2}=-11
\end{aligned}
$$

Solving the system of linear equations gives us $C_{1}=-3$ and $C_{2}=1$
So the solution to the Initial Value Problem is $y=t-3 t^{4}$

You try it:

1. Given that $y_{1}(x)=e^{2 x / 3}$ is a solution of the following differential equation $9 y^{\prime \prime}-12 y^{\prime}+4 y=0$. Use the reduction of order to find a second solution.
(Hint: $v^{\prime \prime}=0$ implies $v^{\prime}=1$)
Find the general solution of the given second-order differential equations:
2. $3 y^{\prime \prime}+2 y^{\prime}+y=0$
3. $x^{2} y^{\prime \prime}+5 x y^{\prime}+4 y=0$

Solutions:

\#1: $y_{2}=x e^{2 x / 3}$
\#2: $y=e^{-x / 3}\left[C_{1} \cos \left(\frac{\sqrt{2}}{3} x\right)+C_{2} \sin \left(\frac{\sqrt{2}}{3} x\right)\right]$
\#3: $y=C_{1} x^{-2}+C_{2} x^{-2} \ln x$

