Differential Equations Formulas and Table of Laplace Transforms

REDUCTION OF ORDER:

Given differential equation in standard form $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$ and one known solution $y_{1}(x)$, then the second solution $y_{2}(x)$ is given by:

$$
y_{2}=y_{1}(x) \cdot \int \frac{e^{-\int p(x) d x}}{y_{1}^{2}(x)} d x
$$

WRONSKIAN:

$$
W\left(y_{1}, y_{2}\right)(x)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}
$$

VARIATION OF PARAMETERS for $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=g(x)$

$$
y_{p}(x)=-y_{1}(x) \int \frac{y_{2}(x) g(x)}{W\left(y_{1}, y_{2}\right)(x)} d x+y_{2}(x) \int \frac{y_{1}(x) g(x)}{W\left(y_{1}, y_{2}\right)(x)} d x
$$

FIRST TRANSLATION THEOREM (FTT)

$$
\mathrm{L}\left\{e^{a t} f(t)\right\}=\mathrm{L}\{f(t)\}_{s \rightarrow s-a}=F(s-a)
$$

SECOND TRANSLATION THEOREM (STT)

$$
\left.\mathrm{L}\{u(t-a) f(t)\}=e^{-a s} \mathrm{~L}\{f(t+a)\}, \quad \text { (to transform } f(t) \text { into } F(s)\right)
$$

or equivalently:

$$
\left.\mathrm{L}^{-1}\left\{e^{-a s} F(s)\right\}=u(t-a) f(t-a), \text { (to transform } F(s) \text { into } f(t)\right)
$$

LAPLACE TRANSFORMS: Def: $F(s)=\mathrm{L}\{f(t)\}=\int_{0}^{\infty} f(t) e^{-s t} d t$

	$f(t)=\mathrm{L}^{-1}\{F(s)\}$	$F(s)=\mathrm{L}\{f(t)\}$
1	1	$\frac{1}{s}, s>0$
2	$e^{a t}$	$\frac{1}{s-a}, s>a$
3	t	$\frac{1}{s^{2}}, s>0$
4	t^{n}, n is a positive integer	$\frac{n!}{s^{n+1}}, s>0$
5	$t^{\alpha}, \alpha>-1$	$\frac{\Gamma(\alpha+1)}{s^{\alpha+1}}, s>0$

R•I•T

6	$\sin (k t)$	$\frac{k}{s^{2}+k^{2}}, s>0$
7	$\cos (k t)$	$\frac{s}{s^{2}+k^{2}}, s>0$
8	$\sinh (k t)$	$\frac{k}{s^{2}-k^{2}}, s>\|k\|$
9	$\cosh (k t)$	$\frac{s}{s^{2}-k^{2}}, s>\|k\|$
10	$t e^{a t}$, FTT	$\frac{1}{(s-a)^{2}}, s>a$
11	$t^{n} e^{a t}, \mathrm{n}$ is a positive integer , FTT	$\frac{n!}{(s-a)^{n+1}}, s>a$
12	$e^{a t} \sin (k t)$, FTT	$\frac{k}{(s-a)^{2}+k^{2}}, s>a$
13	$e^{a t} \cos (k t)$, FTT	$\frac{s-a}{(s-a)^{2}+k^{2}}, s>a$
14	$e^{a t} f(t)$, FTT	$F(s-a)$
15	$t \sin (k t)$	$\frac{2 k s}{\left(s^{2}+k^{2}\right)^{2}}$,
16	$t \cos (k t)$	$\frac{s^{2}-k^{2}}{\left(s^{2}+k^{2}\right)^{2}}$,
17	$t^{n} f(t)$	$(-1)^{n} \frac{d^{n}}{d s^{n}} F(s)$
18	$u(t-a) f(t), \mathrm{STT}$	$e^{-a s} \mathrm{~L}\{f(t+a)\}$
19	$u(t-a) f(t-a)$, STT	$e^{-a s} F(s)$
20	$u(t-a)$	$\frac{e^{-a s}}{s}$
21	$\delta(t)$	1
22	$\delta\left(t-t_{0}\right)$	$e^{-s t_{0}}$
23	$f^{\prime}(t)$	$s F(s)-f(0)$
24	$f^{\prime \prime}(t)$	$s^{2} F(s)-s f(0)-f^{\prime}(0)$
25	$\int_{0}^{t} f(\tau) g(t-\tau) d \tau$	$F(s) G(s)$

