Binary Fractions

Example \#1: Use binary expansion to convert binary fractions into decimals.

$$
\text { 101.1101 }=\left(1 \times 2^{2}\right)+\left(0 \times 2^{1}\right)+\left(1 \times 2^{0}\right)+\left(1 \times 2^{-1}\right)+\left(1 \times 2^{-2}\right)+\left(0 \times 2^{-3}\right)+\left(1 \times 2^{-4}\right)
$$

Now you try some:

Find the decimal equivalent for each binary fraction.
a. 1101.0111
b. 111.111
c. 101.01011

Example \#2: Convert ${13.6875_{10}}$ to a binary fraction.

PART A:

Convert 13 to binary in the ordinary way.

2	13	$\mathrm{R}=1$
2	6	$\mathrm{R}=0$
2	3	$\mathrm{R}=1$
2	1	$\mathrm{R}=1$ 个read \uparrow

Therefore, $13_{10}=1101_{2}$

Hence,

$\mathbf{1 3 . 6 8 7 5}_{10}=1101.1011_{2}$

PART B:

Convert the decimal part in the following manner:
Read Down INTEGER PART
$.6875 \times 2=1.375$

$.375 \times 2=0.750$
$.75 \times 2=1.50$
$.5 \times 2=1.00$
1

Therefore, $.6875_{10}=.1011_{2}$

Now you try some:

Find the binary equivalent for each decimal fraction.
a. 32.45
b. 28.555
c. 7.0202

