Octal and Hexadecimal Number Systems

Octal and Hexadecimal Number Systems

OCTAL or BASE-8 numbers uses eight symbols: $0,1,2,3,4,5,6$, and 7 (count them!) and position plays a major role in expressing their meaning. For example $53,702_{8}$ means

$$
\frac{5 \times 8^{4}}{4096^{\prime} \text { s }}+\frac{3 \times 8^{3}}{512^{\prime} \text { s }}+\frac{7 \times 8^{2}}{\text { Sixty-fours }}+\frac{0 \times 8^{1}}{\text { Eights }}+\frac{2 \times 8^{0}}{\text { Ones (Units) }}
$$

To change this number to base 10, multiply each placeholder by the amount its location represents and add: $(5 \times 4096)+(3 \times 512)+(7 \times 64)+(0 \times 8)+(2 \times 1)=20,480+1536+448+0+1=22,466_{10}$

Now you try some:
$436{ }_{8}=$
$1234{ }_{8}=$
$524_{8}=$

HEXADECIMAL or BASE-16 numbers uses sixteen symbols: $0,1,2,3,4,5,6,7,8,9, A, B, C, D$, and E (count them!) and position plays a major role in expressing their meaning. For example 537CA ${ }_{16}$ means

$$
\frac{5 \times 16^{4}}{65,536^{\prime} \mathrm{s}}+\frac{3 \times 16^{3}}{4096^{\prime} \mathrm{s}}+\frac{7 \times 16^{2}}{256^{\prime} \mathrm{s}}+\frac{\mathrm{C} \times 16^{1}}{\text { Sixteens }}+\frac{\mathrm{A} \times 16^{0}}{\text { Ones (Units) }}
$$

To change this number to base 10, multiply each placeholder by the amount its location represents and add: $(5 \times 65,536)+(3 \times 4096)+(7 \times 256)+(12 \times 8)+(10 \times 1)=327,680+12,288+1792+96+10=$ 341,866 10

Now you try some:
$4 B 6_{16}=$ \qquad (base 10)
$1234_{16}=$ \qquad
$E D A_{16}=$ \qquad (base 10)

Changing a Decimal Number to an Octal Number

Repeatedly divide by eight and record the remainder for each division - read "answer" upwards.
Example: Rewrite the decimal number 215_{10} as an octal number.

The octal result is read upwards \uparrow, therefore
$215_{10}=327_{8}$

Now you try one:
$682_{10}=$ \qquad

Changing a Decimal Number to an Hexadecimal Number

Repeatedly divide by sixteen and record the remainder for each division - read "answer" upwards.
Example: Rewrite the decimal number 215_{10} as an octal number.

Now you try one:
$1682_{10}=$ \qquad

Note how the above algorithms can be adapted to change a decimal number to any chosen base.

Changing Bases Back and Forth between Binary, Octal, and Hexadecimal Systems: An Easy Task!

1. From Binary to Octal - Count off from right to left by three and translate each triad into base 10. These digits will be the base- 8 symbols to express this binary number in octal.
2. From Binary to Hexadecimal - Count off from right to left by four and translate each quad into base 10. These digits will be the base-16 symbols to express this binary number in hexadecimal.
3. From Hexadecimal OR Octal to Binary - Change each symbol to binary and you are done!
4. From Octal to Hexadecimal OR from Hexadecimal to Octal - Change the higher base to binary and then use \#1 or \#2 above to change the binary number to the base desired.

EXAMPLES:

a) Change 1101001010_{2} to an octal number.

b) Change 1001011101_{2} to a hexadecimal number.

001001011101

25 13/D therefore, the hexadecimal number is $\mathbf{2 5} \mathbf{D}_{16}$
c) Change $A 3 D 9_{16}$ to a binary number.

A 3 D 9

1010001111011001 therefore, the binary number is $\mathbf{1 0 1 0 0 0 1 1 1 0 1 0 1 0 1 2 ~}_{2}$
d) Change 630076_{8} to a binary number.
$\begin{array}{llllll}6 & 3 & 0 & 0 & 7 & 6\end{array}$

110011000000111110 therefore, the binary number is
$1_{10011000000111110}^{2}$
e) Change $A 45_{16}$ to octal.

A	4	5	
1010	0100	0101	(rewritten in binary)
101	001001	101	(regrouped the binary digits into groups of three)
5	11	5	therefore the octal number is $\mathbf{5 1 1 5}_{8}$

f) Change 5401_{8} to hexadecimal.

5	4	0	1	
101	100	000	001	(rewritten in binary)
1011	0000	0001	(regrouped the binary digits into groups of four)	
B	0	1	therefore the hexadecimal number is $\mathbf{B 0 1} \mathbf{1}_{16}$	

Further Exercises

1. Express each number as a decimal number.
a. 263_{8}
b. $\mathrm{B} 21_{16}$
c. 5100_{8}
d. $100 \mathrm{E}_{16}$
e. 100332_{8}
f. 10011_{16}
2. Express each number as a binary number.
a. 25248
b. BAC9 $_{16}$
c. 332210_{8}
d. $4009 \mathrm{D}_{16}$
3. Express each number as an octal number.
a. 101001001_{2}
b. 1001010000100010_{2}
c. $\quad \mathrm{B} 78_{16}$
d. 1234_{16}
4. Express each number as a hexadecimal number.
a. 1010100000010101010_{2}
b. 1010101010_{2}
c. 2526_{8}
d. 500047348

ANSWERS

'Now your try some’ answers:

Octal to Decimal
a) 286
b) 664
c) 340

Hexadecimal to Decimal
a) 1206
b) 4660
c) 3802

Decimal to Octal
b) 1252

Decimal to Octal
a) 692
'Further Exercises' answers:

Exercise Set \#1
a. 179
b. 2849
c. 2624
d. 4110
e. 32,986
f. 65,553

Exercise Set \#2
a. 010101010100
b. 1011101011001001
c. 011011010010001000
d. 01000000000010011101

Exercise Set \#3
a. 511
b. 112042
c. 5564
d. 11064

Exercise Set \#4
a. 540 AA
b. 2 AA
c. 556
d. A009DC

