Disjunctive Normal Form or

Sum-of-Products Form

Interpret a Boolean system as a circuit. Given that you know the input into an electrical/logical network and you know what final effect that you desire, how can you find an electrical network that will produce that desired output?

This input/output system is sometimes referred to as a "black box." A simplified example, incorporating only three switches and represented by simple propositions, looks like this:

Notice that we clearly know all varieties of input. Our desired output is specified. We desire to know a logical expression that will produce the given output. To do this we circle each of the output labeled "true". Considering the input (T-T-T) of the topmost circled T, we create the following normal form: $p \wedge q \wedge r$

Here the input is T-F-F, therefore the normal form is $p \wedge \sim q \wedge \sim r$

Here the input is F-F-T, so the normal form is $\sim p \wedge \sim q \wedge r$
There are only three true outputs; therefore there will be only three normal forms.

We join these with the disjunctive "or" resulting in the "disjunctive normal form":

$$
(p \wedge q \wedge r) \vee(p \wedge \sim q \wedge \sim r) \vee(\sim p \wedge \sim q \wedge r)
$$

If you form the truth-table for the above expression, you will discover that it has the same truth value as given as the output found in the last column of our table.

A possible short-cut:

Consider the following "input-output" table:

p	q	?
T	T	T
T	F	C
F	T	T
F	F	T

Circling the outputted T 's and following the process given above, the disjunctive normal form will be $(p \wedge q) \vee(\sim p \wedge q) \vee(\sim p \wedge \sim q)$. (Verify!). Notice, though, that in this case there are more outputted trues than falses. The expression can be shortened, and thereby simplified, if we circle the false outputs instead.

The normal form for this is $p \wedge \sim q$, but since this matches a false output, it will need to be negated. Hence the normal form here is actually $\sim(p \wedge \sim q)$.

Since there are no other normal forms, this will also be considered the disjunctive normal form.

Interesting side note: The table given is that of the conditional statement, $p \rightarrow q$ and we have shown that its disjunctive normal form, $\sim(p \wedge \sim q)$, is logically equivalent to it. Using De Morgan's Law provides the following result:

$$
p \rightarrow q \equiv \sim(p \wedge \sim q) \equiv \sim p \vee q,
$$

which is one of the important identities, one that is able to transform the higherorder implication into the more primitive "or" statement.

Now you try some:

For each of the following logical statements, find the truth value and from that information find the logically equivalent disjunctive normal form.
a. $\sim[(\sim p \rightarrow q) \rightarrow r]$
b. $\quad P \rightarrow(q \wedge r)$
c. $\quad(p \wedge r) \leftrightarrow(\sim q \vee r)$

ANSWERS:
a. $\quad(p \wedge q \wedge \sim r) V(p \wedge \sim q \wedge \sim r) V(\sim p \wedge q \wedge \sim r)$
b. $\quad \sim(p \wedge q \wedge \sim r) V \sim(p \wedge \sim q \wedge r) V \sim(p \wedge \sim q \wedge \sim r)$ (circled false outputs)
[The following would be considered correct as well: $(p \wedge q \wedge r) V(\sim p \wedge q \wedge r) V(\sim p \wedge q \wedge \sim r) V(\sim p \wedge \sim q \wedge$ r) $V(\sim p \wedge \sim q \wedge \sim r)$.]
c. $\quad(p \wedge q \wedge r) V(p \wedge q \wedge \sim r) V(p \wedge \sim q \wedge r) V(\sim p \wedge q \wedge \sim r)$
(Note that there is the same number of true outputs as there are false outputs, therefore true outputs are chosen.)

