

Business Applications

typically found in RIT's Algebra for Mgmt. Science (1016-225) and Calculus for Mgmt. Science (1016-226)

I. Total Revenue, Total Cost, Total Profit

- a. Total Revenue (R) from the sale of x units = R(x): R(x) = (price per unit)(x) R(x) = (price per unit)(x)
- b. Total Cost (C) of production and sale of x units = C(x): C(x) = (cost per unit)(x) + fixed costs Total cost is made up of 2 parts:
 - 1. fixed costs (e.g. rent, utilities, etc)
 - 2. variable costs (costs directly related to the number of units produced)
- c. Total Profit (P) from the production and sale of x units = P(x): P(x) = R(x) C(x)Total profit is the difference between the amount received from sales (revenue) and cost of production.

II. Marginal Revenue, Marginal Cost, and Marginal Profit

- a. Marginal Revenue (\overline{MR})
 - 1. If R(x) is linear, then MR is the slope of the revenue function.
 - 2. Calculus for Management Science: \overline{MR} is the derivative of the revenue function
- b. Marginal Cost (\overline{MC})
 - 1. If C(x) is linear, then \overline{MC} is the slope of the cost function.
 - 2. Calculus for Management Science: \overline{MC} is the derivative of the cost function

a. Marginal Profit (\overline{MP})

- 1. If P(x) is linear, then \overline{MP} is the slope of the profit function.
- 2. Calculus for Management Science: \overline{MP} is the derivative of the profit function

IV. Break Even Point

III.

- a. The point at which the revenue equals the cost:

 which is another way of saying...

 The point at which profit equals zero:

 Find x such that R(x) = C(x)Find x such that P(x) = 0
- b. When the revenue function is greater than the cost function, there is a <u>profit</u>: R(x) > C(x)
- c. When the cost function is greater than the revenue function, there is a <u>loss</u>: C(x) > R(x)

V. Supply, Demand and Market Equilibrium

- a. p = price and q = quantity
- b. The <u>law of supply</u> states that the quantity supplied for sale will increase as the price of a product increases.
- c. The <u>law of demand</u> states that the quantity demanded will increase as price decreases or that the quantity demanded will decrease as price increases.
- d. The intersection of a supply function and the demand function is the point when the quantity of a commodity demanded is equal to the quantity supplied; this is called Market Equilibrium.
 - 1. The price at that intersection point is the <u>Equilibrium Price</u>.
 - 2. The quantity at that intersection point is the Equilibrium Quantity.

 $\mathbf{R} \cdot \mathbf{I} \cdot \mathbf{T}$ www.rit.edu/asc Page 1 of 2

VI. Optimization (Max / Min) in Algebra for Management Science

- a. When finding the maximum (minimum) of a quadratic function, find the vertex
 - 1. The graph of a Quadratic function ($y = ax^2 + bx + c$) is a parabola.
 - 2. Vertex of a parabola: Use $x = \frac{-b}{2a}$ to find the x value and then sub x in to get y...(x, y)
- b. If a revenue function is a parabola opening down, then the vertex is the MAXIMUM REVENUE. Vertex of revenue function = (# of units, \$ maximum revenue)
- c. If a profit function is a parabola opening down, then the vertex is the MAXIMUM PROFIT. Vertex of profit function = (# of units, \$ maximum profit)
- d. If a cost function is parabola opening up, then the vertex is the MINIMUM COST. Vertex of cost function = (# of units, \$ minimum cost)

VII. Optimization (Max / Min) in Calculus for Management Science

To find the maximum (minimum) value,

- 1. Use derivative rules to take the derivative of the function
- 2. Set the derivative equal to zero and solve

VIII. If the question asks you to find...

- a. Break-even point(s)
 - 1. Determine the revenue and cost functions.
 - 2. Set the revenue function equal to the cost function and solve.

OR

- 1. Determine the profit function.
- 2. Set the profit function equal to zero and solve.
- b. Market Equilibrium
 - 1. Determine the supply and demand functions.
 - 2. Set the equations equal to each other and solve for q. Then find the corresponding p.
- c. Maximum Revenue, Maximum Profit, Minimum Cost
 - 1. Determine the revenue, profit or cost function
 - 2. Depending on what course the student is in...

Algebra: Find the vertex

Calculus: Take the derivative and set it equal to zero

 $\mathbf{R} \cdot \mathbf{I} \cdot \mathbf{I}$ www.rit.edu/asc Page 2 of 2