

Comprehensive Summary of Algebra and Geometric Formulas

- Algebra facts and properties
 - o Arithmetic operations
 - Properties of inequalities
 - o Properties of absolute value
 - o Distance formula
 - Exponent properties
 - o Properties of radicals
 - o Complex numbers
 - Log properties
 - o Factoring
 - o Quadratic formula
 - \circ Completing the square
- Function and graphs
- Formulas from geometry

Algebra Cheat Sheet

Basic Properties & Facts	Properties of Inequalities	(b) ab If a c bthen a + c < b + c and a - c < b - c
	thmetic Operations	1000

Arithmetic Operations
$$ab + ac = a(b + c) \qquad a\left(\frac{b}{c}\right) = \frac{ab}{c}$$

$$\frac{a}{c} = \frac{a}{bc}$$

$$\frac{a}{b} = \frac{ac}{b}$$

If a < b and c > 0 then $ac < bc \text{ and } \frac{a}{c} < \frac{b}{c}$

If a < b and c < 0 then ac > bc and $\frac{a}{c} > \frac{b}{c}$

$$\frac{a}{b} = \frac{ac}{\frac{c}{c}}$$

$$\begin{pmatrix} \frac{b}{c} \\ \frac{a}{c} \end{pmatrix} \qquad b \qquad \frac{ad-bc}{b} \qquad \frac{ad-bc}{bd}$$

a c ad + bc

2-b b-a

Properties of Absolute Value
$$|a| = \begin{cases} a & \text{if } a \ge 0 \\ |a| \ge 0 & \text{if } a < 0 \end{cases}$$

$$|a| \ge 0 & |a| = |a|$$

$$|ab| = |a||b| & |a| = |a|$$

$$|a+b| \le |a| + |b|$$
 Triangle Inequality
Distance Formula

P S S

 $\frac{ab+ac}{b+c} = b+c, \ a \neq 0$

a

Exponent Properties

20" = 2""

Distance Formula
If
$$P_1 = (x_1, y_1)$$
 and $P_2 = (x_2, y_2)$ are two
points the distance between them is
 $d(P_1, P_2) = \sqrt{(x_1 - x_1)^2 + (y_2 - y_1)^2}$

 $\frac{a^n}{a^n} = a^{nn} = \frac{1}{a^{nn}}$

a*=1, a=0

(a")" = a"

Complex Numbers

 $\left(\frac{a}{b}\right)^{2} = \frac{a}{b^{2}}$

 $q_{\omega}p = q_{\omega}p_{\omega}$

$$i = \sqrt{-1}$$
 $i^2 = -1$ $\sqrt{-a} = i\sqrt{a}$, $a \ge 0$
 $(a+bi) + (c+di) = a + c + (b+d)i$
 $(a+bi) - (c+di) = a - c + (b-d)i$
 $(a+bi)(c+di) = ac - bd + (ad+bc)i$
 $(a+bi)(a-bi) = a^2 + b^2$
 $a+bi = \sqrt{a^2 + b^2}$ Complex Modules
 $(a+bi) = a-bi$ Complex Conjugate

a - (a) - (a) +

 $\frac{a}{b}$ $\frac{a}{a}$ $\frac{b}{a}$ $\frac{a}{a}$ $\frac{b}{a}$

 a_{1}

, , ,

Properties of Radicals
$$\sqrt{a} = a^{\dagger}$$
 $\sqrt{ab} = \sqrt{a}\sqrt{b}$ $\sqrt{\sqrt{a}} = \sqrt{a}$ $\sqrt{\frac{a}{b}} = \sqrt{a}$

$$\sqrt[4]{3} = \sqrt[4]{a} = \sqrt[4]{b} = \sqrt[4]{b}$$

 $\sqrt[4]{a} = a$, if n is odd

a+bt(a+bt)=[a+bt]

Logarithms and Log Properties
Definition
$$y = \log_8 x$$
 is equivalent to $x = b^y$

Logarithm Properties $\log_b b = 1$ $\log_b 1 = 0$ $\log_b b^a = x \quad b^{ads} = x$

Example
$$S_1$$
 125 = 3 because S^1 = 125

 $\log_4(xy) = \log_5 x + \log_5 y$ $\log_k \left(\frac{x}{y}\right) = \log_k x - \log_k y$

 $\log_b(x') = r \log_b x$

The domain of
$$\log_b x$$
 is $x > 0$
Ractoring and Solving Quadratic Formula Solve $m^2 + h x + c = 0$

log x = log₂₀ x common log

where e = 2.718281828...

n x = log, x natural log

Special Logarithms

oring and Solving
Quadratic Formula
Solve
$$ax^2 + bx + c = 0$$
, $a \ne 0$
 $x = -b \pm \sqrt{b^2 - 4ac}$

If
$$b^2 = 4ac > 0$$
. Two real unequal solux.
If $b^2 = 4ac = 0$. Repeated real solution.
If $b^2 = 4ac = 0$. Two complex solutions.

 $x^{2} + (a+b)x + ab = (x+a)(x+b)$

 $x^{2}-2ax+a^{2}=(x-a)^{2}$

 $x^2 - a^2 = (x + a)(x - a)$ $x^2 + 2\alpha x + a^2 = (x + a)^2$

Factoring Formulas

 $x^3 + 3ax^2 + 3a^2x + a^3 = (x + a)^3$

 $x^3 - 3ax^2 + 3a^2x - a^3 = (x - a)^3$

 $x^2 + a^3 = (x+a)(x^2 - ax + a^2)$ $x^2 - a^2 = (x - a)(x^3 + ax + a^2)$ $x^{2s} - a^{2s} - (x^s - a^s)(x^s + a^s)$

$$x^{\mu} - 3ax^{\mu} + 3a^{\mu}x - a^{\mu} = (x - a)^{\mu}$$
. Square Root Property
 $x^{\mu} + a^{\mu} = (x + a)(x^{\mu} - ax + a^{\mu})$ If $x^{\mu} = p$ then $x = \pm \sqrt{p}$
 $x^{\mu} - a^{\mu} = (x - a)(x^{\mu} + ax + a^{\mu})$ Absolute Value Equations/Inequality in Eq. (2.2) If b is a positive number of Erris add then, $|p| = b \implies p = -b \text{ or } p$
 $x^{\mu} - a^{\mu} = (x^{\mu} - a)(x^{\mu} + ax^{\mu} + \cdots + a^{\mu})$ $|p| < b \implies b = -b \text{ or } p$

Absolute Value Equations/Inequalities

If b is a positive number

$$|p|=b \implies p=-b \text{ or } p=b$$
 $|p|< b \implies -b < p < b$
 $|p|>b \implies p<-b \text{ or } p>b$

If n is odd then,

$$= (x+a) \left(x^{x^{-1}} - ax^{x^{-2}} + a^2 x^{x^{-3}} - \dots + a^{x^{-1}} \right)$$
Completing the Square of Ne $2x^3 - 6x - 10 = 0$ (4) Factor the left side (5) Divide by the coefficient of the x^2
$$\left(\frac{x-3}{2} \right)^2 = \frac{29}{4}$$

Solve $2x^3 - 6x - 10 = 0$

(2) Move the constant to the other side,
$$x^{2} - 3x - 5 = 0$$
(3) Take half the coefficient of x, square (6) Solve for x
$$x^{2} - 3x = 5$$
(3) Take half the coefficient of x, square (6) Solve for x
$$x = 3x + \left(\frac{3}{2}\right)^{2} = 5 + \left(-\frac{3}{2}\right)^{2} = 5 + \frac{9}{4} = \frac{29}{4}$$

For a complete set of online Algebra noise visit <u>prestitutorial main lamanada</u>

	Comm	Common Algebraic Errors
ad Graphs	Error	Resson/Correct/Justification/Exa
Parabola/Quadratic Function	2 x 0 and 2 x 2	Division by year is tradefined!
$x=ay^{*}+by+c$ $g(y)=ay^{*}+by+c$	0 0	and the second s
	94 50	$-3^2 = -9$, $(-3)^2 = 9$ Watch parent
The graph is a narabola that oness notic		

Functions and Graphs	Parabola/Quadratic Function	$x = \alpha y^2 + by + c$ $g(y) = \alpha y^2 + by + c$		The graph is a parabola that opens right if $a > 0$ or left if $a < 0$ and has a vertex	at $\left(B\left(-\frac{b}{2a}\right), \frac{b}{2a}\right)$.
Fun	Constant Function	y=a or $f(x)=a$	Graph is a borizontal line passing	through the point $(0, a)$.	Line/Linear Function $y = mx + b$ or $f(x) = mx + b$

Circle $(x-h)^2 + (y-k)^2 = r^2$	Graph is a circle with rad (A, k) .	Ethipse $(x-k)^2 \cdot (y-k)^2$	Graph is an ellipse with o
Graph is a line with point $(0,b)$ and slope m .	Slope of the line containing the two	points (x_1, y_1) and (x_2, y_2) is $m = \frac{y_2 - y_1}{x_1 - x_1} = \frac{ms}{run}$	Slope – intercept form The equation of the line with slope m

ius r and center

Graph is an ellipse with center
$$(x-k)^2 + (y-k)^2 = 1$$

Graph is an ellipse with center (h,k)
with vertices a units right/left from the center and vertices b units up/down from the center.

Hyperbola
$$\frac{(x-h)^2}{a^2} \frac{(y-k)^2}{b^2} = 1$$
Graph is a hyperbola that on

and passing through the point (x, y,) is

 $y = y_1 + m(x - x_1)$

The equation of the line with slope m

Point – Slope form

y = mx + b

and y-intercept (0,b) is

Graph is a hyperbola that opens left and units left/right of center and asymptotes that pass through center with slope $\pm \frac{b}{a}$ right, has a center at (h,k), vertices a

 $y=a(x-h)^{2}+k$ $f(x)=a(x-h)^{2}+k$

Parabola/Quadratic Function

The graph is a parabola that opens up if a > 0 or down if a < 0 and has a vertex

at (f,k).

$\frac{(y-k)^2}{b^2} - \frac{(x-h)^2}{a^2} = 1$ Hyperbola

asymptotes that pass through center with Graph is a hyperbola that opens up and down, has a center at (h,k), vertices bunits up/down from the center and slope $\pm \frac{b}{a}$.

The graph is a parabola that opens up if a>0 or down if a<0 and has a vertex

(22)

 $\mathbb{E}\left[\frac{b}{2a},f\right]$

 $y = ax^2 + bx + c$ $f(x) = ax^2 + bx + c$

Parabola/Quadratic Function

Exercise Reason/Correct/Justification/Example
$$\frac{2}{0} \neq 0 \text{ and } \frac{2}{0} \neq 2$$
 Division by zero is undefined
$$-3^2 \neq 9$$

$$(x^2)^3 + x^3$$

$$(x^2)^3 + x^4$$

$$(x^2)^3 = x^2 x^2 + x^4$$

$$(x^2)^3 = x^2 x^2 x^2 + x^4$$

$$(x^2)^3 = x^4 x^4 + x^4 +$$

A more complex version of the previous

2x+2x+1x+x

$\frac{a+bx}{a} = \frac{a+bx}{a} = 1 + \frac{bx}{a}$ Beware of incorrect canceling:	-a(x-1) = -ax + a Make sure you distribute the "-":	$(x+a)^2 = (x+a)(x+a) = x^2 + 2\alpha x + a^2$	$5 = \sqrt{25} = \sqrt{3^2 + 4^2} + \sqrt{3^2} + \sqrt{4^2} = 3 + 4 = 7$	See previous error.	More general versions of previous three errors.	$2(x+1)^2 = 2(x^2+2x+1) = 2x^2+4x+2$	
$\frac{\beta + bx}{b} \neq 1 + bx$	$-a(x-1) \neq -ax-a$	$(x+a)^2 \neq x^2 + a^2$	√x² +a² ≠x+a	√x+a≠√x+√a	$(x+a)^* \neq x^* + a^*$ and $\sqrt[4]{x+a} \neq \sqrt[4]{x} + \sqrt[4]{a}$		4/24/4/4/4

eriors.	$2(x+1)^2 = 2(x^2 + 2x+1) = 2x^2 + 4x + 2$	$(2x+2)^2 = 4x^2 + 8x + 4$	Square first then distribute	See the previous example. You can not	factor out a constant if there is a power on	the parethesist
$(x+a)$ $+x$ $+a$ and $\sqrt[4]{x+a} + \sqrt[4]{x+4a}$		$2(x+1)^2 \neq (2x+2)^2$			$(2x+2)^2 \approx 2(x+1)^2$	

$\sqrt{-x^2+a^2} = (-x^2+a^2)^{\frac{1}{2}}$	Now see the previous erro	(a)(a)(c) a	=(e)(1)=[=]
V-x3+03 # - Vx2+03		da a da	(a)

$\left(\frac{a}{c}\right) = \left(\frac{1}{c}\right) = \left(\frac{a}{1}\right) \left(\frac{c}{b}\right) = \frac{ac}{b}$	$\left(\frac{a}{b}\right) = \left(\frac{a}{b}\right) = \left(\frac{a}{b}\right) \left(\frac{1}{b}\right) = \frac{a}{bc}$
	$\frac{a}{b}$ $\frac{ac}{b}$

$R \cdot I \cdot T$

