I. Definition and Properties of the Unit Circle

a. Definition: A Unit Circle is the circle with a radius of one ($r=1$), centered at the origin $(0,0)$.
b. Equation: $x^{2}+y^{2}=1$
c. Arc Length

Since arc length can be found using the formula: $s=r \theta$
(where $s=$ arc length, $r=$ radius, $\theta=$ central angle in radians)
For the unit circle, since $r=1, \quad s=(1) \theta$
Therefore $s=\theta$
The arc length of a sector of a unit circle equals the radian measure of angle θ.
d. Circumference: $C=2 \pi r=2 \pi(1)=2 \pi$

The arc length (circumference) of 2π is also the radian measure of the angle corresponding to 360°.
2π radians $=360$ degrees
π radians $=180$ degrees
e. Relating Coordinate Values to Trig Functions

For any point $P(x, y)$ on the unit circle, $x=\cos \theta$ and $y=\sin \theta$ where θ is
any central angle with:

1) initial side $=$ positive x axis
2) terminal side $=$ radius through pt. P

In the first quadrant this can be verified:

$$
\begin{aligned}
& \sin \theta=\frac{o p p}{h y p}=\frac{y}{r}=\frac{y}{1}=y \\
& \cos \theta=\frac{a d j}{h y p}=\frac{x}{r}=\frac{x}{1}=x
\end{aligned}
$$

f. The x and y axes can be labeled using the radian measure of the angle θ which corresponds to the points where the unit circle intersects the axes.

We can also see this graphically:

$y=\cos x$

Finding the sine and cosine values of quadrantal angles is now easy. For example, to find $\sin \frac{3 \pi}{2}$ use the point ($0,-1$) which corresponds to a central angle of $\frac{3 \pi}{2}$. Since $\sin \frac{3 \pi}{2}$ is the y coordinate of the point, $\sin \frac{3 \pi}{2}=-1$. Similarly, $\cos \frac{3 \pi}{2}=0$ (the x coordinate of the point).
g. Examples:
i. Find the arc length of a sector in a unit circle with a central angle of 120°.

Solution:

In a unit circle, arc length = central angle measured in radians, $s=\theta$. Since π radians equals 180°, multiply 120° by the conversion ratio of $\frac{\pi \quad \text { radians }}{180^{\circ}}$. $120^{\circ}\left(\frac{\pi}{180}\right)=\frac{2 \pi}{3} \quad$ Thus the arc length and the measure of θ are both $\frac{2 \pi}{3}$ radians.
ii. Find $\cos \frac{\pi}{2}$ and $\sin \frac{\pi}{2}$.

Solution:
$\theta=\frac{\pi}{2}$ implies the angle is a right angle $\left(90^{\circ}\right)$, so $P=(0,1)$. Hence, $\cos \frac{\pi}{2}=0$ (the x coordinate of P) and $\sin \frac{\pi}{2}=1$ (the y coordinate of P).

$$
\text { iii. Find } \sin (-\pi) \text { and } \cos (-\pi)
$$

Solution:
If $\theta=-\pi, P=(-1,0)$. So $\sin (-\pi)=0$ (y value) and $\cos (-\pi)=-1(x$ coordinate of P).

II. More Properties of the Unit Circle

a. If $\theta=\frac{\pi}{4}$ (which is equivalent to 45°), then for the point P on the unit circle, $x=y=\frac{\sqrt{2}}{2}$.

If $\theta=\frac{\pi}{4}\left(45^{\circ}\right)$, then $P=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$.

Explanation:

$x^{2}+y^{2}=1 \quad$ (equation of unit circle)
$x^{2}+x^{2}=1 \quad\left(x=y\right.$ since it is an isosceles $45^{\circ}-45^{\circ}-90^{\circ}$ triangle $)$
$2 x^{2}=1$
$x=\sqrt{\frac{1}{2}}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}=y$
b. If $\theta=\frac{\pi}{6}$ (which is equivalent to 30°), then for the point P on the unit circle, $x=\frac{\sqrt{3}}{2}$ and $y=\frac{1}{2}$.

Using properties of $30^{\circ}-60^{\circ}-90^{\circ}$ triangles with hypotenuse of length 1 (since $r=1$):

$$
\text { If } \theta=\frac{\pi}{6}\left(30^{\circ}\right) \text {, then } P=\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right) \text {. }
$$

c. If $\theta=\frac{\pi}{3}$ (which is equivalent to 60°), then for the point P on the unit circle, $x=\frac{1}{2}$ and $y=\frac{\sqrt{3}}{2}$.

Using properties of $30^{\circ}-60^{\circ}-90^{\circ}$ triangles with hypotenuse of length 1 (since $r=1$):

$$
\text { If } \theta=\frac{\pi}{3}\left(60^{\circ}\right), \text { then } P=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)
$$

NOTE:

The larger side, $\frac{\sqrt{3}}{2}$, is always opposite the larger angle, $\frac{\pi}{3}$, and the smaller side, $\frac{1}{2}$, is opposite the smaller angle, $\frac{\pi}{6}$.
d. Examples:

Find :
(i) $\sin \frac{\pi}{6}$
(ii) $\csc \frac{\pi}{3}$
(iii) $\tan \frac{\pi}{4}$

Solution:
(i) $\sin \frac{\pi}{6}=\frac{1}{2}\left(y\right.$ coordinate when $\left.\theta=\frac{\pi}{6}\right)$
(ii) $\csc \frac{\pi}{3}=\frac{1}{\sin \frac{\pi}{3}}=\frac{1}{\frac{\sqrt{3}}{2}}=\frac{2}{\sqrt{3}}=\frac{2 \sqrt{3}}{3}$
(iii) $\tan \frac{\pi}{4}=\frac{\sin \frac{\pi}{4}}{\cos \frac{\pi}{4}}=\frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}=1$

III. More on Evaluating Trig Functions Using the Unit Circle

 It is important to recognize the radian measure of the standard angles related to $\frac{\pi}{6}, \frac{\pi}{4}$, and $\frac{\pi}{3}$ located in quadrants II, III, and IV.| Graph | Reference
 Angle | QI | QII | QIII | QIV | Point P |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\frac{\pi}{6}$ | $\frac{\pi}{6}$ | $\frac{5 \pi}{6}$ | $\frac{7 \pi}{6}$ | $\frac{11 \pi}{6}$ | $\left(\pm \frac{\sqrt{3}}{2}, \pm \frac{1}{2}\right)$ |
| | $\frac{\pi}{4}$ | $\frac{\pi}{4}$ | $\frac{3 \pi}{4}$ | $\frac{5 \pi}{4}$ | $\frac{7 \pi}{4}$ | $\left(\pm \frac{\sqrt{2}}{2}, \pm \frac{\sqrt{2}}{2}\right)$ |

The signs of the x and y values of point P can be determined by knowing the quadrant the angle terminates in. It's as simple as remembering:

$\underline{\text { All }} \underline{\text { Students }} \underline{\text { Take }} \underline{\text { Calculus }}$

Examples:

1. Evaluate $\sin \frac{5 \pi}{4}$.

Solution:

$\frac{5 \pi}{4}$ has a reference angle of $\frac{\pi}{4}$.

Since $\frac{5 \pi}{4}=\pi+\frac{\pi}{4}$, it is in quadrant III. $\quad \begin{aligned} & \text { NOTE: Our final answer will be } \\ & \text { negative because only } \tan \theta \text { and } \cot \theta\end{aligned}$ are positive in the third quadrant.
$P=\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right) \quad$ (since x and y are negative in QIII)
$\sin \frac{5 \pi}{4}=-\frac{\sqrt{2}}{2} \quad$ (the y coordinate of P)
2. Evaluate $\cos \frac{5 \pi}{6}$.

Solution:
$\frac{5 \pi}{6}$ has a reference angle of $\frac{\pi}{6}$.

Since $\frac{5 \pi}{6}=\pi-\frac{\pi}{6}$, it is in quadrant II.

NOTE: Our final answer will be negative because only $\sin \theta$ and $\csc \theta$ are positive in the second quadrant.
$P=\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right) \quad$ (since x negative in QII)
$\cos \frac{5 \pi}{6}=-\frac{\sqrt{3}}{2} \quad$ (the x coordinate of P)
3. Evaluate $\tan \frac{11 \pi}{3}$.

Solution:
$\frac{11 \pi}{3}$ has a reference angle of $\frac{\pi}{3}$.

Since $\frac{11 \pi}{3}=2 \pi-\frac{\pi}{3}$, it is in quadrant IV \quad NOTE: Our final answer will be negative because only $\cos \theta$ and $\sec \theta$ are positive in the fourth quadrant.
$P=\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$
$\tan \frac{11 \pi}{3}=-\frac{\sin \frac{\pi}{3}}{\cos \frac{\pi}{3}}=-\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=-\sqrt{3}$

IV. Other Facts Derived From the Unit Circle

1. Fundamental Identity:

For any point P on the unit circle, $P=(x, y)=(\cos \theta, \sin \theta)$.
Substituting $x=\cos \theta$ and $y=\sin \theta$ into the equation of the circle:

$$
\begin{aligned}
& x^{2}+y^{2}=1 \\
& (\cos \theta)^{2}+(\sin \theta)^{2}=1 \\
& \sin ^{2} \theta+\cos ^{2} \theta=1
\end{aligned}
$$

2. Other identities:

The x coordinates of points for θ and $-\theta$ are the same, so:

$$
\cos (-\theta)=\cos (\theta)
$$

Therefore $\cos (\theta)$ is an even function.
The y coordinates of points for θ and $-\theta$ are the opposite, so: $\sin (-\theta)=-\sin (\theta)$
Therefore $\sin (\theta)$ is an odd function.

Practice Exercises:

Use the unit circle to answer the following problems.

1. Evaluate:
a. $\cos \pi$
2. Find the six trigonometric functions values at the following values of θ :
a. $\frac{5 \pi}{3}$
b. $\sin \frac{3 \pi}{2}$
b. $\frac{3 \pi}{4}$
c. $\tan (-3 \pi)$
c. $\frac{7 \pi}{6}$
d. $\csc \frac{\pi}{2}$
d. $-\frac{11 \pi}{6}$

Solutions: Unit Circle Trig

1. a) -1
b) -1
c) 0
d) 1
2.

Angle	a. $\frac{5 \pi}{3}$	b. $\frac{3 \pi}{4}$	c. $\frac{7 \pi}{6}$	d. $-\frac{11 \pi}{6}$
Quadrant	QIV	QII	QIII	QI
Point P	$\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$	$\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$	$\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$	$\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$
$\sin \theta$	$-\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$
$\cos \theta$	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$
$\tan \theta$	$-\frac{2}{\sqrt{3}}=-\frac{2 \sqrt{3}}{3}$	$\frac{2}{\sqrt{2}}=\sqrt{2}$	-2	$\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$
$\csc \theta$	2	$-\frac{2}{\sqrt{2}}=-\sqrt{2}$	$-\frac{2}{\sqrt{3}}=-\frac{2 \sqrt{3}}{3}$	$\frac{2}{\sqrt{3}}=\frac{2 \sqrt{3}}{3}$
$\sec \theta$	$-\frac{1}{\sqrt{3}}=-\frac{\sqrt{3}}{3}$	-1	$\sqrt{3}$	$\sqrt{3}$
$\cot \theta$				

