asc

Evaluating Trig Functions

I. Definition and Properties of the Unit Circle

- a. <u>Definition</u>: A **Unit Circle** is the circle with a radius of one (r=1), centered at the origin (0,0).
- b. Equation: $x^2 + y^2 = 1$

c. Arc Length

Since arc length can be found using the formula: $s = r\theta$ (where s = arc length, r = radius, $\theta = \text{central angle in radians}$) For the unit circle, since r = 1, $s = (1)\theta$

Therefore $s = \theta$

The arc length of a sector of a unit circle equals the radian measure of angle θ .

d. <u>Circumference</u>: $C = 2\pi r = 2\pi(1) = 2\pi$

The arc length (circumference) of 2π is also the radian measure of the angle corresponding to 360° .

 2π radians = 360 degrees π radians = 180 degrees

e. Relating Coordinate Values to Trig Functions

For any point P(x, y) on the unit circle,

$$x = \cos \theta$$
 and $y = \sin \theta$ where θ is any central angle with:

- 1) initial side = positive x axis
- 2) terminal side = radius through pt. *P*

In the first quadrant this can be verified:

$$\sin \theta = \frac{opp}{hyp} = \frac{y}{r} = \frac{y}{1} = y$$

$$\cos\theta = \frac{adj}{hyp} = \frac{x}{r} = \frac{x}{1} = x$$

f. The x and y axes can be labeled using the radian measure of the angle θ which corresponds to the points where the unit circle intersects the axes.

We can also see this graphically:

 $y = \cos x$

Finding the sine and cosine values of quadrantal angles is now easy. For example, to find $\sin \frac{3\pi}{2}$ use the point (0,-1) which corresponds to a central angle of $\frac{3\pi}{2}$. Since $\sin \frac{3\pi}{2}$ is the y coordinate of the point, $\sin \frac{3\pi}{2} = -1$. Similarly, $\cos \frac{3\pi}{2} = 0$ (the x coordinate of the point).

g. Examples:

i. Find the arc length of a sector in a unit circle with a central angle of 120° .

Solution:

In a unit circle, arc length = central angle measured in radians, $s = \theta$. Since π radians equals 180°, multiply 120° by the conversion ratio of $\frac{\pi \quad radians}{180^{\circ}}$.

$$120^{\circ} \left(\frac{\pi}{180}\right) = \frac{2\pi}{3}$$
 Thus the arc length and the measure of θ are both $\frac{2\pi}{3}$ radians.

ii. Find $\cos \frac{\pi}{2}$ and $\sin \frac{\pi}{2}$.

Solution:

 $\theta = \frac{\pi}{2}$ implies the angle is a right angle (90°), so P = (0,1). Hence, $\cos \frac{\pi}{2} = 0$ (the x coordinate of P) and $\sin \frac{\pi}{2} = 1$ (the y coordinate of P).

iii. Find $\sin(-\pi)$ and $\cos(-\pi)$

Solution:

If $\theta = -\pi$, P = (-1,0). So $\sin(-\pi) = 0$ (y value) and $\cos(-\pi) = -1$ (x coordinate of P).

II. **More Properties of the Unit Circle**

a. If $\theta = \frac{\pi}{4}$ (which is equivalent to 45°), then for the point P on the unit circle, $x = y = \frac{\sqrt{2}}{2}$.

If
$$\theta = \frac{\pi}{4}$$
 (45°), then $P = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$.

Explanation:

 $x^2 + y^2 = 1$ (equation of unit circle)

 $x^2 + x^2 = 1$ (x = y since it is an isosceles $45^{\circ} - 45^{\circ} - 90^{\circ}$ triangle)

$$2x^2 = 1$$

$$x = \sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} = y$$

b. If $\theta = \frac{\pi}{6}$ (which is equivalent to 30°), then for the point P on the unit circle, $x = \frac{\sqrt{3}}{2}$ and $y = \frac{1}{2}$.

Using properties of $30^{\circ} - 60^{\circ} - 90^{\circ}$ triangles with hypotenuse of length 1 (since r = 1):

c. If $\theta = \frac{\pi}{3}$ (which is equivalent to 60°), then for the point P on the unit circle, $x = \frac{1}{2}$ and $y = \frac{\sqrt{3}}{2}$.

Using properties of $30^{\circ} - 60^{\circ} - 90^{\circ}$ triangles with hypotenuse of length 1 (since r = 1):

If
$$\theta = \frac{\pi}{3}$$
 (60°), then $P = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$.

The larger side, $\frac{\sqrt{3}}{2}$, is always opposite the larger angle, $\frac{\pi}{3}$, and the smaller side, $\frac{1}{2}$, is opposite the smaller angle, $\frac{\pi}{6}$.

d. Examples:

Find:

(i)
$$\sin \frac{\pi}{6}$$

(ii)
$$\csc \frac{\pi}{3}$$

(i)
$$\sin \frac{\pi}{6}$$
 (ii) $\csc \frac{\pi}{3}$ (iii) $\tan \frac{\pi}{4}$

(i)
$$\sin \frac{\pi}{6} = \frac{1}{2}$$
 (y coordinate when $\theta = \frac{\pi}{6}$)

Solution:
(i)
$$\sin \frac{\pi}{6} = \frac{1}{2}$$
 (y coordinate when $\theta = \frac{\pi}{6}$)

$$\theta = \frac{\pi}{6}$$
 (ii) $\csc \frac{\pi}{3} = \frac{1}{\sin \frac{\pi}{3}} = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$

(iii)
$$\tan \frac{\pi}{4} = \frac{\sin \frac{\pi}{4}}{\cos \frac{\pi}{4}} = \frac{\frac{\sqrt{2}}{\sqrt{2}}}{\frac{\sqrt{2}}{2}} = 1$$

III. More on Evaluating Trig Functions Using the Unit Circle It is important to recognize the radian measure of the standard angles related to $\frac{\pi}{6}$, $\frac{\pi}{4}$, and $\frac{\pi}{3}$ located in quadrants II, III, and IV.

Graph	Reference Angle	QI	QII	QIII	QIV	Point P
y x	$\frac{\pi}{6}$	$\frac{\pi}{6}$	$\frac{5\pi}{6}$	$\frac{7\pi}{6}$	$\frac{11\pi}{6}$	$\left(\pm\frac{\sqrt{3}}{2},\pm\frac{1}{2}\right)$
yx	$\frac{\pi}{4}$	$\frac{\pi}{4}$	$\frac{3\pi}{4}$	$\frac{5\pi}{4}$	$\frac{7\pi}{4}$	$\left(\pm\frac{\sqrt{2}}{2},\pm\frac{\sqrt{2}}{2}\right)$
y x	$\frac{\pi}{3}$	$\frac{\pi}{3}$	$\frac{2\pi}{3}$	$\frac{4\pi}{3}$	$\frac{5\pi}{3}$	$\left(\pm\frac{1}{2},\pm\frac{\sqrt{3}}{2}\right)$

The signs of the x and y values of point P can be determined by knowing the quadrant the angle terminates in. It's as simple as remembering:

$\underline{\mathbf{A}}$ ll $\underline{\mathbf{S}}$ tudents $\underline{\mathbf{T}}$ ake $\underline{\mathbf{C}}$ alculus

Quadrant II

Sine & cosecant are positive

Quadrant I

All trig functions are positive

Quadrant III

Tangent & cotangent are positive

Quadrant IV

Cosine & secant are positive

Examples:

1. Evaluate $\sin \frac{5\pi}{4}$.

Solution:

 $\frac{5\pi}{4}$ has a reference angle of $\frac{\pi}{4}$.

Since $\frac{5\pi}{4} = \pi + \frac{\pi}{4}$, it is in quadrant III.

NOTE: Our final answer will be negative because only $\tan \theta$ and $\cot \theta$ are positive in the third quadrant.

$$P = (-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2})$$
 (since x and y are negative in QIII)

$$\sin \frac{5\pi}{4} = -\frac{\sqrt{2}}{2}$$
 (the y coordinate of P)

Evaluate $\cos \frac{5\pi}{6}$. 2.

Solution:

$$\frac{5\pi}{6}$$
 has a reference angle of $\frac{\pi}{6}$.

Since
$$\frac{5\pi}{6} = \pi - \frac{\pi}{6}$$
, it is in quadrant II.

Since $\frac{5\pi}{6} = \pi - \frac{\pi}{6}$, it is in quadrant II. \blacksquare Because only $\sin \theta$ and $\csc \theta$ are positive in the second quadrant.

$$P = (-\frac{\sqrt{3}}{2}, \frac{1}{2})$$

(since x negative in QII)

$$\cos \frac{5\pi}{6} = -\frac{\sqrt{3}}{2}$$
 (the x coordinate of P)

Evaluate $\tan \frac{11\pi}{3}$.

Solution:

$$\frac{11\pi}{3}$$
 has a reference angle of $\frac{\pi}{3}$.

Since $\frac{11\pi}{3} = 2\pi - \frac{\pi}{3}$, it is in quadrant IV. \blacksquare Since $\frac{10\pi}{3} = 2\pi - \frac{\pi}{3}$, it is in quadrant IV. \blacksquare Since $\frac{10\pi}{3} = 2\pi - \frac{\pi}{3}$, it is in quadrant IV. \blacksquare Since $\frac{10\pi}{3} = 2\pi - \frac{\pi}{3}$, it is in quadrant IV.

$$P = (\frac{1}{2}, -\frac{\sqrt{3}}{2})$$

$$\tan\frac{11\pi}{3} = -\frac{\sin\frac{\pi}{3}}{\cos\frac{\pi}{3}} = -\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = -\sqrt{3}$$

Other Facts Derived From the Unit Circle

1. <u>Fundamental Identity</u>:

For any point P on the unit circle, $P = (x, y) = (\cos \theta, \sin \theta)$.

Substituting $x = \cos \theta$ and $y = \sin \theta$ into the equation of the circle:

$$x^2 + y^2 = 1$$

$$(\cos\theta)^2 + (\sin\theta)^2 = 1$$

$$\sin^2\theta + \cos^2\theta = 1$$

2. Other identities:

The *x* coordinates of points for θ and $-\theta$ are the same, so:

$$\cos(-\theta) = \cos(\theta)$$

Therefore $cos(\theta)$ is an **even** function.

The *y* coordinates of points for θ and $-\theta$ are the opposite, so:

$$\sin(-\theta) = -\sin(\theta)$$

Therefore $sin(\theta)$ is an **odd** function.

Practice Exercises:

Use the unit circle to answer the following problems.

1. Evaluate:

- a. $\cos \pi$
- b. $\sin \frac{3\pi}{2}$
- c. $tan(-3\pi)$
- d. $\csc \frac{\pi}{2}$

2. Find the six trigonometric functions values at the following values of θ :

- a. $\frac{5\pi}{3}$
- b. $\frac{3\pi}{4}$
- c. $\frac{7\pi}{6}$
- d. $-\frac{11\pi}{6}$

Solutions: Unit Circle Trig

1. a) -1

b) -1

c) o

d) 1

2.

Angle	a. $\frac{5\pi}{3}$	b. $\frac{3\pi}{4}$	c. $\frac{7\pi}{6}$	d. $-\frac{11\pi}{6}$
Quadrant	QIV	QII	QIII	QI
Point P	$\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$	$\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$	$\left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$	$\left(\frac{\sqrt{3}}{2},\frac{1}{2}\right)$
$\sin \theta$	$-\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$
$\cos \theta$	$\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$
$\tan \theta$	$-\sqrt{3}$	-1	$\frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$	$\frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$
$\csc \theta$	$-\frac{2}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}$	$\frac{2}{\sqrt{2}} = \sqrt{2}$	-2	2
$\sec \theta$	2	$-\frac{2}{\sqrt{2}} = -\sqrt{2}$	$-\frac{2}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}$	$\frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$
$\cot \theta$	$-\frac{1}{\sqrt{3}} = -\frac{\sqrt{3}}{3}$	-1	$\sqrt{3}$	$\sqrt{3}$