Practice with Trigonometric Identities

Complete the following practice exercise using the Trigonometry Identities reference page handout.

Practice Exercises:

1. Given the double angle formula for cosine: $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$
a. Use the trig identity $\sin ^{2} \theta+\cos ^{2} \theta=1$ to rewrite $\cos 2 \theta$ in terms of $\sin ^{2} \theta$ only.
b. Use the trig identity $\sin ^{2} \theta+\cos ^{2} \theta=1$ to rewrite $\cos 2 \theta$ in terms of $\cos ^{2} \theta$ only.
2. Consider the following identity: $\sin \left(\theta+\frac{\pi}{2}\right)=\cos \theta$
a. Draw the graph of the cosine function on the domain $0 \leq \theta \leq 2 \pi$.
b. Extend the graph of the cosine function to show the graph for $-\frac{\pi}{2} \leq \theta \leq 0$.
c. How does the graph of the cosine function for $-\frac{\pi}{2} \leq \theta \leq \frac{3 \pi}{2}$ compare to the sine function for $0 \leq \theta \leq 2 \pi$?
d. Verify that the identity above: $\sin \left(\theta+\frac{\pi}{2}\right)=\cos \theta$ is correct using the addition identity for $\sin (x+y)$.
3. Derive the double angle formula for sine by using the addition formula for sine. That is, find $\sin (2 x)=\sin (x+x)=$ etc. Derive the double angle formula for cosine using a similar technique.
4. Derive the half angle formula for $\sin ^{2} x$ by starting with the cosine double angle formula $\cos 2 x=1-2 \sin ^{2} x$ and by solving for $\sin ^{2} x$ in terms of $\cos 2 x$. Derive the other half angle formula using a similar technique.
5. The Law of Sines and Cosines are applicable to all triangles. Find the length of side "a" of triangle ABC if:
a. $A=40^{\circ}, B=100^{\circ}, b=20$
(Use Law of Sines)
b. $A=40^{\circ}, c=12, b=20$
(Use Law of Cosines)

SOLUTIONS:

1. a) $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$

$$
\begin{aligned}
& =\left(1-\sin ^{2} \theta\right)-\sin ^{2} \theta \\
& =1-2 \sin ^{2} \theta
\end{aligned}
$$

b) $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$

$$
\begin{aligned}
& =\cos ^{2} \theta-\left(1-\cos ^{2} \theta\right) \\
& =2 \cos ^{2} \theta-1
\end{aligned}
$$

2. a)

b)

c) The graph is the same as one period of sine (this identity states that the cosine function is the same as the sine function shifted $\frac{\pi}{2}$ units to the left).
d) $\sin (x+y)=\sin x \cos y+\cos x \sin y$

$$
\begin{aligned}
\sin \left(\theta+\frac{\pi}{2}\right) & =\sin \theta \cos \frac{\pi}{2}+\cos \theta \sin \frac{\pi}{2} \\
& =(\sin \theta)(0)+(\cos \theta)(1) \\
& =\cos \theta
\end{aligned}
$$

3. $\sin 2 x=\sin (x+x)=\sin x \cos x+\cos x \sin x=2 \sin x \cos x$ $\cos 2 x=\cos (x+x)=\cos x \cos x-\sin x \sin x=\cos ^{2} x-\sin ^{2} x$
4. $\cos 2 x=1-2 \sin ^{2} x$
$2 \sin ^{2} x=1-\cos 2 x$
$\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$
$\cos 2 x=2 \cos ^{2} x-1$
$2 \cos ^{2} x=1-\cos 2 x$
$\cos ^{2} x=\frac{1}{2}(1-\cos 2 x)$
5. a) $\frac{\sin 40^{\circ}}{a}=\frac{\sin 100^{\circ}}{20} \longrightarrow a=13.05$
b) $a^{2}=20^{2}+12^{2}-(20)(12) \cos 40^{\circ}$

$$
a=18.98
$$

R•I•T

