asc

Practice with Trigonometric Identities

Complete the following practice exercise using the Trigonometry Identities reference page handout.

Practice Exercises:

- 1. Given the double angle formula for cosine: $\cos 2\theta = \cos^2 \theta \sin^2 \theta$
 - a. Use the trig identity $\sin^2 \theta + \cos^2 \theta = 1$ to rewrite $\cos 2\theta$ in terms of $\sin^2 \theta$ only.
 - b. Use the trig identity $\sin^2 \theta + \cos^2 \theta = 1$ to rewrite $\cos 2\theta$ in terms of $\cos^2 \theta$ only.
- 2. Consider the following identity: $\sin\left(\theta + \frac{\pi}{2}\right) = \cos\theta$
 - a. Draw the graph of the cosine function on the domain $0 \le \theta \le 2\pi$.
 - b. Extend the graph of the cosine function to show the graph for $-\frac{\pi}{2} \le \theta \le 0$.
 - c. How does the graph of the cosine function for $-\frac{\pi}{2} \le \theta \le \frac{3\pi}{2}$ compare to the sine function for $0 \le \theta \le 2\pi$?
 - d. Verify that the identity above: $\sin\left(\theta + \frac{\pi}{2}\right) = \cos\theta$ is correct using the addition identity for $\sin(x+y)$.
- 3. Derive the double angle formula for sine by using the addition formula for sine. That is, find $\sin(2x) = \sin(x+x) = \text{etc.}$ Derive the double angle formula for cosine using a similar technique.
- 4. Derive the half angle formula for $\sin^2 x$ by starting with the cosine double angle formula $\cos 2x = 1 2\sin^2 x$ and by solving for $\sin^2 x$ in terms of $\cos 2x$. Derive the other half angle formula using a similar technique.
- 5. The Law of Sines and Cosines are applicable to **all** triangles. Find the length of side "a" of triangle ABC if:

a.
$$A = 40^{\circ}$$
, $B = 100^{\circ}$, $b = 20$ (Use Law of Sines)

b.
$$A = 40^{\circ}$$
, $c = 12$, $b = 20$ (Use Law of Cosines)

SOLUTIONS:

1. a)
$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$

$$= (1 - \sin^2 \theta) - \sin^2 \theta$$

$$= 1 - 2\sin^2 \theta$$

b)
$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$

$$= \cos^2 \theta - (1 - \cos^2 \theta)$$

$$= 2\cos^2 \theta - 1$$

- c) The graph is the same as one period of sine (this identity states that the cosine function is the same as the sine function shifted $\frac{\pi}{2}$ units to the left).
- d) $\sin(x+y) = \sin x \cos y + \cos x \sin y$

$$\sin\left(\theta + \frac{\pi}{2}\right) = \sin\theta\cos\frac{\pi}{2} + \cos\theta\sin\frac{\pi}{2}$$
$$= (\sin\theta)(0) + (\cos\theta)(1)$$
$$= \cos\theta$$

3. $\sin 2x = \sin(x+x) = \sin x \cos x + \cos x \sin x = 2\sin x \cos x$ $\cos 2x = \cos(x+x) = \cos x \cos x - \sin x \sin x = \cos^2 x - \sin^2 x$

4.
$$\cos 2x = 1 - 2\sin^2 x$$
 $\cos 2x = 2\cos^2 x - 1$
 $2\sin^2 x = 1 - \cos 2x$ $2\cos^2 x = 1 - \cos 2x$
 $\sin^2 x = \frac{1}{2}(1 - \cos 2x)$ $\cos^2 x = \frac{1}{2}(1 - \cos 2x)$

5. a)
$$\frac{\sin 40^{\circ}}{a} = \frac{\sin 100^{\circ}}{20}$$
 \longrightarrow $a = 13.05$

b)
$$a^2 = 20^2 + 12^2 - (20)(12)\cos 40^\circ$$

 $a = 18.98$