## Solving Trigonometric Equations

## EQUATION SOLVING:

Example 1: Find all possible values of $\theta$ so that $\cos \theta=\frac{1}{2}$.
Solution: $\theta=\frac{\pi}{3}+2 \pi n, \theta=\frac{5 \pi}{3}+2 \pi n$, where n is an integer.

## Solution Method \#1 - Graphically:

There are an infinite number of solutions which are represented by the $\theta$ value of intersection points of the cosine curve and the constant function $y=\frac{1}{2}$.


For $0 \leq \theta \leq 2 \pi$, there are two solutions: $\theta=\frac{\pi}{3} \quad\left(60^{\circ}\right)$ and $\theta=\frac{5 \pi}{3} \quad\left(300^{\circ}\right)$.
Generalizing, $\theta=\frac{\pi}{3}+2 \pi n, \theta=\frac{5 \pi}{3}+2 \pi n$, where n is an integer. Thus all solutions differ from the original two solutions by multiples of the period of the cosine function.

## Solution Method \#2 - Unit Circle Approach:

$\cos \theta=\frac{1}{2}$ occurs when $x=\frac{1}{2}$ for point(s) on the unit circle.
The two points are $\left(\frac{1}{2}, \pm \frac{\sqrt{3}}{2}\right)$. The corresponding angles are $\theta=\frac{\pi}{3}$ (QI) and $\theta=\frac{5 \pi}{3}$ (QIV).
Generalizing, $\theta=\frac{\pi}{3}+2 \pi n, \theta=\frac{5 \pi}{3}+2 \pi n$.


## Solution Method \#3 - Triangle Approach:

$\cos \theta=\frac{1}{2}$ is a special case that involves $30^{\circ}-60^{\circ}-90^{\circ}$ triangles. Since $\cos \theta=\frac{a d j}{h y p}=\frac{1}{2}$, this implies $\theta$ must be $60^{\circ}$ or $\frac{\pi}{3}$ radians. Generalizing, $\cos \theta$ is also positive in QIV with a reference angle of $60^{\circ}$. Generalizing completely, $\theta=\frac{\pi}{3}+2 \pi n, \theta=\frac{5 \pi}{3}+2 \pi n$.

## Solution Method \#4 - Calculator:

Set the calculator to degree mode. (It will be easier to recognize the answers in degrees, which can then be converted to radian measure.)
Solving $\cos \theta=\frac{1}{2}$ is equivalent to solving:

$$
\text { inverse } \cos \left(\frac{1}{2}\right)=\cos ^{-1}\left(\frac{1}{2}\right)=\theta
$$

(This is explained in more detail in the handout on inverse trigonometric functions.) Use the INV key (or $2^{\text {nd }}$ function key) and the COS key with $\frac{1}{2}$ to get an answer of $60^{\circ}$.

Example 2: Find 3 positive and 2 negative solutions for $\sin \theta=\frac{1}{2}$.
Solution: There are many different correct solutions. One solution set is $\theta=\left\{-\frac{11 \pi}{6},-\frac{7 \pi}{6}, \frac{\pi}{6}, \frac{5 \pi}{6}, \frac{13 \pi}{6}\right\}$

## Solution Method \#1 - Graphically:

Five solutions are the $\theta$ values of the 5 points of intersection of the sine curve and the horizontal line $y=\frac{1}{2}$ shown below.

$$
y=\sin x \text { (3 positive solutions are depicted in the graph })
$$



Thus, $\theta=-\frac{11 \pi}{6},-\frac{7 \pi}{6}, \frac{\pi}{6}, \frac{5 \pi}{6}, \frac{13 \pi}{6}$.

## Solution Method \#2 - Unit Circle Approach:

$\sin \theta=\frac{1}{2}$ occurs when $y=\frac{1}{2}$ for point(s) on the unit circle. The two points are $\left( \pm \frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ for angles $\theta=\frac{\pi}{6}, \frac{5 \pi}{6}$. The corresponding angles are $\theta=\frac{\pi}{6}(\mathrm{QI})$ and $\theta=\frac{5 \pi}{6}(\mathrm{QII})$.


Generalizing, $\theta=\frac{\pi}{6}+2 \pi n, \theta=\frac{5 \pi}{6}+2 \pi n$.

$$
\theta=-\frac{11 \pi}{6},-\frac{7 \pi}{6}, \frac{\pi}{6}, \frac{5 \pi}{6}, \frac{13 \pi}{6}
$$

## Solution Method \#3 - Triangle Approach:

$\sin \theta=\frac{1}{2}$ is a special case that involves $30^{\circ}-60^{\circ}-90^{\circ}$ triangles. Since $\sin \theta=\frac{o p p}{h y p}=\frac{1}{2}$, this implies $\theta$ must be $30^{\circ}$ or $\frac{\pi}{6}$ radians. Generalizing, $\sin \theta$ is also positive in QII with a reference angle of $30^{\circ}$ (so
 $\theta=\frac{5 \pi}{6}$, or $150^{\circ}$ ). The other solutions can be found by adding or subtracting multiples of the period.

## Solution Method \#4 - Calculator:

Set the calculator to degree mode. Solving $\sin \theta=\frac{1}{2}$ is equivalent to solving:

$$
\text { inverse } \sin \left(\frac{1}{2}\right)=\sin ^{-1}\left(\frac{1}{2}\right)=\theta
$$

(This is explained in more detail in the handout on inverse trigonometric functions.) Use the INV key (or $2^{\text {nd }}$ function key) and the SIN key with $\frac{1}{2}$ to get an answer of $30^{\circ}$.

Example 3: Solve for $x: \sqrt{3} \sin x-2 \sin x \cos x=0,0 \leq x<2 \pi$.
Solution: Factor the expression on the left and set each factor to zero.

$$
\begin{array}{ll}
\sin x \sqrt{3}-2 \sin x \cos x=0 \\
(\sin x)(\sqrt{3}-2 \cos x)=0 & \\
\sin x=0 & \text { or } \\
x=0, \pi & \cos x=\frac{\sqrt{3}}{2} \\
& x=\frac{\pi}{6}, \frac{11 \pi}{6}
\end{array}
$$

Answers: $x=0, \frac{\pi}{6}, \pi, \frac{11 \pi}{6}$

Example 4: Solve for $x: \sin ^{2} x-\sin x-2=0,0 \leq x<2 \pi$.
Solution: Factor the quadratic expression on the left and set each factor to zero.

$$
\begin{array}{ll}
\sin ^{2} x-\sin x-2=0 & \\
(\sin x-1)(\sin x+2)=0 & \\
\sin x-1=0 & \text { or }
\end{array} \quad \begin{aligned}
& \sin x+2=0 \\
& \sin x=1
\end{aligned}
$$

$$
x=\frac{\pi}{2} \quad \text { No solution. (Since the minimum value }
$$

$$
\text { of } \sin x \text { is }-1 \text {, it cannot equal }-2 \text {.) }
$$

Answer: $x=\frac{\pi}{2}$

Example 5: Solve for $x: \tan 2 x=1,0 \leq x<2 \pi$.

Solution: Solving $\tan \theta=1$ first, we know that $\tan \frac{\pi}{4}=1$ (QI) and $\tan \frac{5 \pi}{4}=1$ (QIII). So $\theta=\frac{\pi}{4}+\pi n$, where $\pi n$ is integer multiples of the period of the tangent function.

For our problem:

$$
\begin{array}{ll}
\theta=2 x=\frac{\pi}{4}+\pi n & \text { for } n=\ldots-1,0,1,2, \ldots \\
x=\frac{\pi}{8}+\frac{\pi n}{2} & \text { (dividing by 2) } \\
\left.x=\frac{\pi}{8}(\text { if } n=0), \frac{5 \pi}{8}(\text { if } n=1), \frac{9 \pi}{8} \text { (if } n=2\right), \frac{13 \pi}{8}(\text { if } n=3)
\end{array}
$$

Note: If $n<0$ or $n>3$, the resulting x values are not in the interval of $0 \leq x<2 \pi$.

Answer: $x=\frac{\pi}{8}, \frac{5 \pi}{8}, \frac{9 \pi}{8}, \frac{13 \pi}{8}$

## Problems: Solving Trigonometric Equations

1. Find all possible values of $\theta$ so that $\sin \theta=-\frac{1}{2}$.
2. Find one negative and two positive solutions for $\tan x=-1$.
3. Find $x, 0 \leq x \leq 2 \pi$, for the following:
a. $\quad \cos x=\frac{\sqrt{3}}{2}$
b. $\quad \cos 2 x=\frac{\sqrt{3}}{2}$
c. $2 \cos ^{2} x-\cos x-1=0$
d. $\cos ^{2} x-\sin x \cos x=0$

## SOLUTIONS:

1. $\frac{7 \pi}{6}+2 \pi n, \frac{11 \pi}{6}+2 \pi n$ for integer $n$ or $210^{\circ}+360 n, 330^{\circ}+360 n$.
2. $\frac{-\pi}{4}, \frac{3 \pi}{4}, \frac{7 \pi}{4}$ since the values of tangent are negative in QII and QIV.
3. a) $\frac{\pi}{6}, \frac{11 \pi}{6}$
b) $2 x=\frac{\pi}{6}, \frac{11 \pi}{6}, \frac{13 \pi}{6}, \frac{23 \pi}{6}$ so $x=\frac{\pi}{12}, \frac{11 \pi}{12}, \frac{13 \pi}{12}, \frac{23 \pi}{12}$
c) $(2 \cos x+1)(\cos x-1)=0$
$\cos x=-\frac{1}{2} \quad$ or $\quad \cos x=1$
$x=\frac{2 \pi}{3}, \frac{4 \pi}{3}, 0,2 \pi$
d) $\cos x(\cos x-\sin x)=0$ $\begin{array}{lll}\cos x=0 \quad \text { or } & \cos x=\sin x \\ x=\frac{\pi}{2}, \frac{3 \pi}{2} & x=\frac{\pi}{4}, \frac{5 \pi}{4} \quad & \begin{array}{l}\text { (note that } \cos x \text { and } \sin x \\ \text { in quadrants I and III) }\end{array}\end{array}$
