

# Solving Trigonometric Equations

### **EQUATION SOLVING:**

**Example 1**: Find all possible values of  $\theta$  so that  $\cos \theta = \frac{1}{2}$ .

**Solution**:  $\theta = \frac{\pi}{3} + 2\pi n$ ,  $\theta = \frac{5\pi}{3} + 2\pi n$ , where n is an integer.

### **Solution Method #1 – Graphically:**

There are an infinite number of solutions which are represented by the  $\theta$  value of intersection points of the cosine curve and the constant function  $y = \frac{1}{2}$ .



For  $0 \le \theta \le 2\pi$ , there are two solutions:  $\theta = \frac{\pi}{3}$  (60°) and  $\theta = \frac{5\pi}{3}$  (300°).

Generalizing,  $\theta = \frac{\pi}{3} + 2\pi n$ ,  $\theta = \frac{5\pi}{3} + 2\pi n$ , where n is an integer. Thus all solutions differ from the original two solutions by multiples of the period of the cosine function.

# Solution Method #2 – Unit Circle Approach:

 $\cos \theta = \frac{1}{2}$  occurs when  $x = \frac{1}{2}$  for point(s) on the unit circle.

The two points are  $\left(\frac{1}{2}, \pm \frac{\sqrt{3}}{2}\right)$ . The corresponding

angles are 
$$\theta = \frac{\pi}{3}$$
 (QI) and  $\theta = \frac{5\pi}{3}$  (QIV).

Generalizing, 
$$\theta = \frac{\pi}{3} + 2\pi n$$
,  $\theta = \frac{5\pi}{3} + 2\pi n$ .



## Solution Method #3 - Triangle Approach:

$$\cos \theta = \frac{1}{2}$$
 is a special case that involves 30° - 60° - 90° triangles.

Since 
$$\cos \theta = \frac{adj}{hyp} = \frac{1}{2}$$
, this implies  $\theta$  must be  $60^{\circ}$  or  $\frac{\pi}{3}$ 

radians. Generalizing,  $\cos\theta$  is also positive in QIV with a reference angle of 60°. Generalizing completely,

$$\theta = \frac{\pi}{3} + 2\pi n$$
,  $\theta = \frac{5\pi}{3} + 2\pi n$ .



### Solution Method #4 - Calculator:

Set the calculator to degree mode. (It will be easier to recognize the answers in degrees, which can then be converted to radian measure.)

Solving  $\cos \theta = \frac{1}{2}$  is equivalent to solving:

inverse 
$$\cos\left(\frac{1}{2}\right) = \cos^{-1}\left(\frac{1}{2}\right) = \theta$$
.

(This is explained in more detail in the handout on inverse trigonometric functions.) Use the **INV** key (or  $2^{nd}$  function key) and the **COS** key with  $\frac{1}{2}$  to get an answer of  $60^{\circ}$ .

**Example 2:** Find 3 positive and 2 negative solutions for  $\sin \theta = \frac{1}{2}$ .

**Solution**: There are many different correct solutions. One solution set is  $\theta = \left\{ -\frac{11\pi}{6}, -\frac{7\pi}{6}, \frac{\pi}{6}, \frac{5\pi}{6}, \frac{13\pi}{6} \right\}$ 

<u>Solution Method #1 – Graphically</u>: Five solutions are the  $\theta$  values of the 5 points of intersection of the sine curve and the horizontal line  $y = \frac{1}{2}$  shown below.

 $y = \sin x$  (3 positive solutions are depicted in the graph)



Thus, 
$$\theta = -\frac{11\pi}{6}, -\frac{7\pi}{6}, \frac{\pi}{6}, \frac{5\pi}{6}, \frac{13\pi}{6}$$
.

## Solution Method #2 - Unit Circle Approach:

 $\sin \theta = \frac{1}{2}$  occurs when  $y = \frac{1}{2}$  for point(s) on

the unit circle. The two points are  $\left(\pm \frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ 

for angles  $\theta = \frac{\pi}{6}, \frac{5\pi}{6}$ . The corresponding

angles are  $\theta = \frac{\pi}{6}$  (QI) and  $\theta = \frac{5\pi}{6}$  (QII).

Generalizing,  $\theta = \frac{\pi}{6} + 2\pi n$ ,  $\theta = \frac{5\pi}{6} + 2\pi n$ .

$$\theta = -\frac{11\pi}{6}, -\frac{7\pi}{6}, \frac{\pi}{6}, \frac{5\pi}{6}, \frac{13\pi}{6}$$



# Solution Method #3 – Triangle Approach:

 $\sin \theta = \frac{1}{2}$  is a special case that involves 30° - 60° - 90°

triangles. Since  $\sin \theta = \frac{opp}{hyp} = \frac{1}{2}$ , this implies  $\theta$  must

be 30° or  $\frac{\pi}{6}$  radians. Generalizing,  $\sin \theta$  is also positive in QII with a reference angle of 30° (so  $\theta = \frac{5\pi}{6}$ , or 150°). The other solutions can be found by adding or subtracting multiples of the period.



### **Solution Method #4 - Calculator:**

Set the calculator to degree mode. Solving  $\sin \theta = \frac{1}{2}$  is equivalent to solving:

**inverse** 
$$\sin\left(\frac{1}{2}\right) = \sin^{-1}\left(\frac{1}{2}\right) = \theta$$
.

(This is explained in more detail in the handout on inverse trigonometric functions.) Use the **INV** key (or  $2^{nd}$  function key) and the **SIN** key with  $\frac{1}{2}$  to get an answer of  $30^{\circ}$ .

**Example 3:** Solve for  $x: \sqrt{3} \sin x - 2 \sin x \cos x = 0$ ,  $0 \le x < 2\pi$ .

<u>Solution</u>: Factor the expression on the left and set each factor to zero.

$$\sin x\sqrt{3} - 2\sin x \cos x = 0$$

$$(\sin x)(\sqrt{3} - 2\cos x) = 0$$

$$\sin x = 0 \qquad \text{or} \qquad \sqrt{3} - 2\cos x = 0$$

$$x = 0, \pi \qquad \cos x = \frac{\sqrt{3}}{2}$$

$$x = \frac{\pi}{6}, \frac{11\pi}{6}$$

Answers: 
$$x = 0, \frac{\pi}{6}, \pi, \frac{11\pi}{6}$$

**Example 4:** Solve for  $x: \sin^2 x - \sin x - 2 = 0$ ,  $0 \le x < 2\pi$ .

<u>Solution</u>: Factor the quadratic expression on the left and set each factor to zero.

$$\sin^2 x - \sin x - 2 = 0$$

$$(\sin x - 1)(\sin x + 2) = 0$$

$$\sin x - 1 = 0 \quad \text{or} \quad \sin x + 2 = 0$$

$$\sin x = 1 \quad \sin x = -2$$

$$x = \frac{\pi}{2}$$
No solution. (Since the minimum value of sinx is -1, it cannot equal -2.)

Answer: 
$$x = \frac{\pi}{2}$$

**Example 5**: Solve for x:  $\tan 2x = 1$ ,  $0 \le x < 2\pi$ .

Solution: Solving  $\tan\theta=1$  first, we know that  $\tan\frac{\pi}{4}=1$  (QI) and  $\tan\frac{5\pi}{4}=1$  (QIII). So  $\theta=\frac{\pi}{4}+\pi n$ , where  $\pi n$  is integer multiples of the period of the tangent function.

For our problem:

$$\theta = 2x = \frac{\pi}{4} + \pi n \qquad \text{for } n = \dots -1,0,1,2,\dots$$

$$x = \frac{\pi}{8} + \frac{\pi n}{2} \qquad \text{(dividing by 2)}$$

$$x = \frac{\pi}{8} \text{ (if } n = 0\text{)}, \ \frac{5\pi}{8} \text{ (if } n = 1\text{)}, \ \frac{9\pi}{8} \text{ (if } n = 2\text{)}, \ \frac{13\pi}{8} \text{ (if } n = 3\text{)}$$

Note: If n < 0 or n > 3, the resulting x values are not in the interval of  $0 \le x < 2\pi$ .

Answer: 
$$x = \frac{\pi}{8}, \frac{5\pi}{8}, \frac{9\pi}{8}, \frac{13\pi}{8}$$

# **Problems: Solving Trigonometric Equations**

1. Find all possible values of  $\theta$  so that  $\sin \theta = -\frac{1}{2}$ .

2. Find one negative and two positive solutions for  $\tan x = -1$ .

3. Find x,  $0 \le x \le 2\pi$ , for the following:

a. 
$$\cos x = \frac{\sqrt{3}}{2}$$

$$b. \quad \cos 2x = \frac{\sqrt{3}}{2}$$

c. 
$$2\cos^2 x - \cos x - 1 = 0$$

d.  $\cos^2 x - \sin x \cos x = 0$ 

### **SOLUTIONS:**

- 1.  $\frac{7\pi}{6} + 2\pi n$ ,  $\frac{11\pi}{6} + 2\pi n$  for integer  $n \text{ or } 210^{\circ} + 360n$ ,  $330^{\circ} + 360n$ .
- 2.  $\frac{-\pi}{4}$ ,  $\frac{3\pi}{4}$ ,  $\frac{7\pi}{4}$  since the values of tangent are negative in QII and QIV.
- 3. a)  $\frac{\pi}{6}$ ,  $\frac{11\pi}{6}$

b) 
$$2x = \frac{\pi}{6}$$
,  $\frac{11\pi}{6}$ ,  $\frac{13\pi}{6}$ ,  $\frac{23\pi}{6}$  so  $x = \frac{\pi}{12}$ ,  $\frac{11\pi}{12}$ ,  $\frac{13\pi}{12}$ ,  $\frac{23\pi}{12}$ 

- c)  $(2\cos x + 1)(\cos x 1) = 0$   $\cos x = -\frac{1}{2}$  or  $\cos x = 1$  $x = \frac{2\pi}{3}, \frac{4\pi}{3}, 0, 2\pi$
- d)  $\cos x(\cos x \sin x) = 0$   $\cos x = 0$  or  $\cos x = \sin x$  $x = \frac{\pi}{2}, \frac{3\pi}{2}$   $x = \frac{\pi}{4}, \frac{5\pi}{4}$  (note that  $\cos x$  and  $\sin x$  have the same sign in quadrants I and III)