Ambiguous Triangles

Given triangular parts SSS, ASA or AAS always guarantees a single, unique triangle.
Given the triangular parts SSA, however, is different and leaves the triangle unclear, or ambiguous. The "Ambiguous Case" (SSA) occurs when we are given two sides and the angle opposite one of these given sides. The triangles resulting from this condition needs to be explored much more closely than the SSS, ASA, and AAS cases, for SSA may result in one triangle, two triangles, or even no triangle at all!

Solving Triangles - The Ambiguous Case (SSA)

Two Examples

Solving Triangles for the Ambiguous Case (SSA)

Example \#1 (No Triangles)

Given $\mathrm{A}=42^{\circ}, \mathrm{a}=3, \mathrm{~b}=8$
Since $\mathrm{A}=42^{\circ}<90^{\circ}$ and $\mathrm{a}<\mathrm{b}$, we calculate the value of $\sin B$ using the Law of Sines:

$$
\frac{3}{\sin 42^{\circ}}=\frac{8}{\sin B} \text { yields that } \sin B=1.784 \text { which is greater than one }
$$

(recall that $-1<\sin B<+1$). Hence, there are no possible triangles and nothing to solve for.

Example \#2 (Two Triangles)
Given $\mathrm{A}=34^{\circ}, \mathrm{a}=2, \mathrm{~b}=3$
Since $\mathrm{A}=34^{\circ}<90^{\circ}$ and $\mathrm{a}<\mathrm{b}$, we again calculate the value of $\sin B$ using the Law of Sines:
$\frac{2}{\sin 34^{\circ}}=\frac{3}{\sin B}$ yields that $\sin B=0.839$, which is between zero and one. Hence there will be two possible triangles to solve for.

First Triangle

$\boldsymbol{B}_{\mathbf{1}}=\sin ^{-1} 0.839=57.01^{\circ}$
Therefore $C_{1}=180^{\circ}-34^{\circ}-57.01^{\circ}=88.99^{\circ}$

> Triangle \#1
> $<B_{1}=57.01^{\circ}$
> $<C_{1}=88.99^{\circ}$ side $c_{1}=3.58$

Finally, again using the Law of Sines,
$\frac{2}{\sin 34^{\circ}}=\frac{c}{\sin 88.99^{\circ}}$ and, solving this equation for c , we get $c_{1}=3.58$.

Second Triangle

Angle $\boldsymbol{B}_{\mathbf{2}}$ is found by subtracting $<\boldsymbol{B}_{\mathbf{1}}$ from 180°.
Thus $<\boldsymbol{B}_{2}=180^{\circ}-57.01^{\circ}=122.99^{\circ}$.

Triangle \#2
$<B_{2}=122.99^{\circ}$
$<C_{2}=23.01^{\circ}$
side $c_{2}=1.40$

Angle $\boldsymbol{C}_{2}=180^{\circ}-34^{\circ}-122.99^{\circ}=23.01^{\circ}$
And to find the missing side, c_{2}, we solve the ratio $\frac{2}{\sin 34^{\circ}}=\frac{c_{2}}{\sin 23.01^{\circ}}$.
Hence, side $c_{2}=1.40$.

Now you try some!

a) Determine the number of triangle that can be represented given the specified two sides and angle.
b) Then solve for all possible triangles.

1. $\mathrm{A}=120^{\circ}, \mathrm{a}=250, \mathrm{~b}=195$
2. $\mathrm{A}=70^{\circ}, \mathrm{a}=20, \mathrm{~b}=30$
3. $\mathrm{A}=10^{\circ}, \quad \mathrm{a}=10, \quad \mathrm{~b}=5$
4. $\mathrm{A}=40^{\circ}, \quad \mathrm{a}=5, \quad \mathrm{~b}=9$
5. $\mathrm{A}=40^{\circ}, \quad \mathrm{a}=270, \mathrm{~b}=580$
6. $\mathrm{A}=45^{\circ}, \quad \mathrm{a}=5, \quad \mathrm{~b}=6$
7. $\mathrm{A}=10^{\circ}, \quad \mathrm{a}=10, \quad \mathrm{~b}=20$
8. $\mathrm{A}=85^{\circ}, \quad \mathrm{a}=350, \quad \mathrm{~b}=351$
9. $\mathrm{A}=30^{\circ}, \quad \mathrm{a}=30, \quad \mathrm{~b}=65$
10. $\mathrm{A}=120^{\circ}, \quad \mathrm{a}=25, \quad \mathrm{~b}=10$
11. $\mathrm{A}=30^{\circ}, \quad \mathrm{a}=20, \quad \mathrm{c}=28$
12. $\mathrm{A}=50^{\circ}, \quad \mathrm{a}=150, \quad \mathrm{c}=100$
13. $\mathrm{A}=30^{\circ}, \quad \mathrm{a}=160, \quad \mathrm{~b}=120$
14. $\mathrm{A}=75^{\circ}, \quad \mathrm{a}=180, \quad \mathrm{c}=185$
15. $\mathrm{A}=60^{\circ}, \quad \mathrm{a}=170, \quad \mathrm{~b}=180$
16. $\mathrm{A}=150^{\circ}, \quad \mathrm{a}=150, \quad \mathrm{c}=15$
17. $\mathrm{A}=170^{\circ}, \quad \mathrm{a}=12, \quad \mathrm{~b}=8$
18. $\mathrm{A}=120^{\circ}, \quad \mathrm{a}=120, \quad \mathrm{c}=160$

FIRST TRIANGLE

	Number of Triangles	Other Two Angles	Third Side	Other Two Angles	Third Side
1.	1	$\mathrm{~B}=42.49^{\circ}, \mathrm{C}=17.51^{\circ}$	$\mathrm{c}=86.84$		
2.	0				
3.	1	$\mathrm{~B}=4.98^{\circ}, \mathrm{C}=165.02^{\circ}$	$\mathrm{c}=14.89$		
4.	0				
5.	0				
6.	2	$\mathrm{~B}=58.05^{\circ}, \mathrm{C}=76.95^{\circ}$	$\mathrm{c}=6.89$	$\mathrm{~B}=121.95^{\circ}, \mathrm{C}=13.05^{\circ}$	$\mathrm{c}=1.60$
7.	2	$\mathrm{~B}=20.32^{\circ}, \mathrm{C}=149.68^{\circ}$	$\mathrm{c}=29.07$	$\mathrm{~B}=159.68^{\circ}, \mathrm{C}=10.32^{\circ}$	$\mathrm{c}=10.32$
8.	2	$\mathrm{~B}=87.49^{\circ}, \mathrm{C}=7.51^{\circ}$	$\mathrm{c}=45.92$	$\mathrm{~B}=92.51^{\circ}, \mathrm{C}=2.49^{\circ}$	$\mathrm{c}=15.26$
9.	0				
10.	1	$\mathrm{~B}=20.26^{\circ}, \mathrm{C}=39.73^{\circ}$	$\mathrm{c}=18.45$		$\mathrm{~b}=9.97$
11.	2	$\mathrm{~B}=105.57^{\circ}, \mathrm{C}=44.43^{\circ}$	$\mathrm{b}=38.53$	$\mathrm{~B}=14.43^{\circ}, \mathrm{C}=135.57^{\circ}$	$\mathrm{b}=1$
12.	1	$\mathrm{~B}=99.29^{\circ}, \mathrm{C}=30.71^{\circ}$	$\mathrm{b}=193.24$		
13.	1	$\mathrm{~B}=22.02^{\circ}, \mathrm{C}=127.98^{\circ}$	$\mathrm{c}=252.25$		$\mathrm{~b}=26.26$
14.	2	$\mathrm{~B}=21.90^{\circ}, \mathrm{C}=83.10^{\circ}$	$\mathrm{b}=69.51$	$\mathrm{~B}=8.10^{\circ}, \mathrm{C}=96.90^{\circ}$	
15.	2	$\mathrm{~B}=66.49^{\circ}, \mathrm{C}=53.51^{\circ}$	$\mathrm{c}=157.82$	$\mathrm{~B}=113.51^{\circ}, \mathrm{C}=6.49^{\circ}$	$\mathrm{c}=22.18$
16.	1	$\mathrm{~B}=2.87^{\circ}, \mathrm{C}=27.13^{\circ}$	$\mathrm{c}=136.82$		
17.	1	$\mathrm{~B}=6.65^{\circ}, \mathrm{C}=3.35^{\circ}$	$\mathrm{c}=4.04$		
18.	0				

