EDG-trac Knife Advance System Performance Evaluation for Rotary Vacuum Filters

Tristar, Ltd. is a manufacturer of fabricated components and equipment, including remanufactured filtration systems. The EDG-trac Knife Advance system (EDG stands for encoded digital guidance) is an ancillary system for a rotary vacuum drum filter (RVDF), which consists of an advancing knife, single motor gear drive, and associated controls. In the EDG-trac Knife Advance system, accumulated solids are cut away from the filter drum surface much more efficiently, while maintaining acceptable solids separation and improving liquid throughput.

Challenge
Remanufacturing is an important means of extending the life of a product and reducing environmental impacts. It was anticipated that, when compared to conventional systems, a remanufactured filter system, which incorporated the newly designed EDG-trac Knife Advance System, would use less energy and water, produce a drier sludge cake, and have a higher filtrate throughput. NYSP2I assisted Tristar with quantifying these improvements.

Solution
NYSP2I performed a comparative analysis of the two systems at a chemical manufacturer who was replacing two traditional RVDF systems with two remanufactured systems built by Tristar. The performance of the traditional operating RVDF system and Tristar’s remanufactured “EDG-trac” system was measured using the following key parameters: energy use, filtration rate, sludge moisture content, and effluent quality (suspended solids).

Results
The Tristar EDG-trac Knife Advance System, as installed in a remanufactured rotary vacuum drum filter, exhibited the following performance results as compared to a traditional RVDF system:

- 700% on average increase in water filtration throughput
- 87.4% reduction in energy use, per gallon filtered
- Comparable sludge moisture content, and suspended solids removal efficiencies
- Tristar is targeting the creation of 5 NY State jobs to expand manufacturing of EDG-trac.

NYSP2I PARTNERS

Funding provided by the New York State Department of Environmental Conservation.
© 2016 Rochester Institute of Technology
Any opinions, results, findings, and/or interpretations of data contained herein are the responsibility of Rochester Institute of Technology and its NYS Pollution Prevention Institute and do not represent the opinions, interpretation or policy of the State.