The flat rotation curves of spiral galaxies provided clear evidence for mass discrepancies in galactic systems, but the nature of dark matter (DM) still remains elusive. I will describe recent results from the Spitzer Photometry and Accurate Rotation Curves (SPARC) dataset: the largest collection of HI rotation curves currently available for late-type galaxies (spirals and irregulars). New Spitzer photometry at 3.6 um provides the closest proxy to the stellar mass, allowing precise estimates of the baryonic gravitational field at every radius (g_{bar}). We find that the observed acceleration correlates with g_{bar} over 4 dex, implying a close link between baryons and DM in galaxies. This radial acceleration relation coincides with unity (no DM) at high g_{bar} but systematically deviates below a critical acceleration scale. The observed scatter is remarkably small, even when DM dominates at low g_{bar}. Early-type galaxies (ellipticals, lenticulars, and dwarf spheroidals) follow the same relation as late-type galaxies. The radial acceleration relation is tantamount to a “Kepler Law” for galactic systems: when the baryonic contribution is measured, the rotation curve follows, and vice versa. I will discuss possible interpretations within the standard LCDM cosmology as well as alternative theories.

Bio: My research interests revolve around the structure, dynamics, and evolution of galaxies. Specifically, I study galaxies in the nearby Universe, where one has access to the full range of galaxy types (from giants to dwarfs) and can investigate their internal properties in exquisite detail.