Math and Statistics Career Guide and Resource List

Rochester Institute of Technology
Office of Cooperative Education and Career Services
Table of Contents

Section: Page(s):

Key Skills Employers Expect from Math and Statistics Students 2

What Kinds of Problems Can I Solve? .. 2-3

Sample Position Titles... 4

What Types of Jobs are Available? ... 4-8

Where Can I Work? .. 8-10

What Professional Associations Are Available? 13
Key Skills Employers Expect from Math and Statistics Students:

Some of the top skills employers look for in mathematics and statistics students include:

- Mastery of college-level mathematical and statistical concepts and ability to apply concepts to solve real-world problems
- Ability to use computer programming and numerical computing applications to solve problems (applicable to Applied Mathematics and Applied Statistics in addition to Computational Mathematics)
- Analytical thinking and problem-solving skills
- Ability to analyze and interpret data and communicate findings verbally and in writing
- Teamwork
- Knowledge of at least basic concepts in the industry or field in which you plan to work is helpful (Ex. Actuarial Science, Business/Finance, Chemistry, Engineering, etc…)

Sources: http://www.uncwil.edu/stuaff/career/Majors/math.htm and http://www.bls.gov/oco/ocos043.htm

What Kinds of Problems Can I Solve?

Organizations of all types and sizes encounter problems that need to be solved using mathematical and statistical concepts. Listed below are some examples of problems someone with a mathematical or statistical background might be asked to solve; a few examples of organizations doing each type of work are also provided.

- How can an airline use smarter scheduling to reduce costs of aircraft parking and engine maintenance? Example organizations: American Airlines; IBM Research
- How can a detailed plan for a clinical trial be designed? Example organizations: Boston Scientific; Medtronic; Wyeth; Pfizer
- Is the replacement of gasoline with ethanol a viable solution to the world’s dependence on fossil fuels? Can biofuel production be optimized to combat negative implications on the world’s economy and environment? Example organizations: U.S. government agencies and labs; Amoco Exxon Research and Engineering; Petrobras
- How might the U.S. Social Security system be changed to guarantee the integrity of the system’s future? U.S. Social Security Administration
- How can automotive systems become more efficient and reduce emissions as mandated by U.S. public policy? Example organizations: Ford Motor Company; General Motors
- How can the current uncertainty of nuclear stockpile stewardship and management be estimated for optimum efficiency and safety? Example organizations: U.S. government agencies and labs; Lockheed-Martin Energy Research Corporation; Schatz Energy Research Center (SERC)
- How can climate modeling at the global, regional, and local levels reduce uncertainties regarding long-term climate change, provide input for the formulation of energy and environmental policy, and abate the impact of violent storms? Example organizations: U.S. government agencies and labs such as the National Oceanic and Atmospheric Administration (NOAA)
- How can automotive and aircraft companies test performance, safety, and ergonomics, while at the same time lowering the cost of construction and prototype testing? Example
organizations: The Aerospace Corporation; Lockheed Martin; Boeing; General Motors; Ford Motor Co.

- A pharmaceutical company wants to search a very large database of proteins to find one that is similar in shape or activity to one they have discovered. What’s the most efficient way to do this? Example organizations: GlaxoSmithKline; Merck & Co., Inc

- How might disease spread in populated areas in the event of a bioterrorism incident? Example organizations: U.S. government agencies and labs; U.S. Department of Homeland Security

- How do you cram enough data through a high-bandwidth communications network to deliver large data sets reliably? Example organizations: Clear Channel Communications; Qwest Communications; Verizon

- When we pick up a quarter our brain sends complicated signals to our nerves and muscles. How do you design a mechanical hand to grip a coin and drop it in a slot? Example organizations: Shadow Robot Company; iRobot Corporation

- How can you mathematically model the spread of a forest fire depending on weather, ground cover, and type of trees? Example organizations: Fire departments; U.S. government agencies such as the National Oceanic and Atmospheric Administration (NOAA)

- How can you allocate an investment among various financial instruments to meet a risk/reward tradeoff? Example organizations: Citibank; Moody’s Corporation; Prudential

- Computer chips are “printed,” much like photographs, from a negative, but manufacturing the “negative” is too expensive to permit cut-and-dry testing of proposed layouts and the corresponding “print.” Are there accurate mathematical models of the exposure process? Can they be coupled with efficient computational implementations to obtain practical, low-cost simulations to guide chip design and manufacture? Example organizations: Bell Laboratories, Alcatel-Lucent; Hewlett-Packard; Honeywell; IBM Corp.; Motorola; Philips Research; SGI

- A chemical manufacturer must shift one of its product lines to a new family of compounds that will not harm the ozone layer. Can computational simulations show sufficient detail to capture the effects of the chemicals, but still be fast enough to permit studies of many different chemicals? Example organizations: U.S. government agencies and labs; DuPont; Kodak

Sample Position Titles:

Finding jobs applicable to math and statistics majors can be challenging because few job titles actually have the word “mathematician” or “statistician” in them. Instead, math and statistics professionals are much more likely to be called an “engineer” or an “analyst,” among several other titles. Below are some examples of possible position titles.

<table>
<thead>
<tr>
<th>Accountant</th>
<th>Data Processing Manager</th>
<th>Meteorologist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuary</td>
<td>Database Manager</td>
<td>Numerical Analyst</td>
</tr>
<tr>
<td>Air Traffic Controller</td>
<td>Demographer</td>
<td>Operations Research Analyst</td>
</tr>
<tr>
<td>Applications Programmer</td>
<td>Econometrician</td>
<td>Physicist</td>
</tr>
<tr>
<td>Appraiser</td>
<td>Economist</td>
<td>Production Manager</td>
</tr>
<tr>
<td>Banking/Credit/Investment Manager</td>
<td>Engineer</td>
<td>Public Health Statistician</td>
</tr>
<tr>
<td>Benefits Administrator</td>
<td>Engineering Analyst</td>
<td>Quality Assurance Analyst</td>
</tr>
<tr>
<td>Biometrician/ Biostatistician</td>
<td>Engineering Lab Technician</td>
<td>Quantitative Analyst</td>
</tr>
<tr>
<td>Budget Analyst</td>
<td>Estate Planner</td>
<td>Rate Analyst</td>
</tr>
<tr>
<td>Business Analyst</td>
<td>External Auditor</td>
<td>Research Analyst</td>
</tr>
<tr>
<td>Cartographer</td>
<td>Financial Advisor</td>
<td>Research Associate</td>
</tr>
<tr>
<td>Claims Adjuster</td>
<td>Financial Auditor</td>
<td>Research Mathematician</td>
</tr>
<tr>
<td>Commodities Trader</td>
<td>Industrial/Institutional Buyer</td>
<td>Risk & Insurance Specialist</td>
</tr>
<tr>
<td>Commodity Manager</td>
<td>Insurance Agent/Broker</td>
<td>Risk Analyst</td>
</tr>
<tr>
<td>Computer Consultant</td>
<td>Inventory Control Specialist</td>
<td>Software Developer</td>
</tr>
<tr>
<td>Computer Engineer</td>
<td>Investment Banker</td>
<td>Software Engineer</td>
</tr>
<tr>
<td>Computer Programmer</td>
<td>IRS Investigator</td>
<td>Statistician</td>
</tr>
<tr>
<td>Computer Scientist</td>
<td>Loan/Credit Officer</td>
<td>Systems Analyst</td>
</tr>
<tr>
<td>Contract Administrator</td>
<td>Logistics Analyst</td>
<td>Systems Engineer</td>
</tr>
<tr>
<td>Controller</td>
<td>Market Research Analyst</td>
<td>Transportation Planner</td>
</tr>
<tr>
<td>Cost Estimator/Analyst</td>
<td>Mathematical Software Programmer/Analyst</td>
<td>Underwriter</td>
</tr>
<tr>
<td>Cryptanalyst</td>
<td>Mathematician</td>
<td>University Professor/Teacher</td>
</tr>
</tbody>
</table>

What Types of Jobs are Available?

Mathematicians apply theories and methods, such as mathematical modeling and simulation, to solve problems found in several types of settings including business, economics, government, engineering, and the sciences. An advanced degree (Master’s and/or Ph.D.) is often required for mathematician jobs; however, mathematician jobs in the Federal Government can be obtained with a Bachelor’s degree. The majority of ‘pure’ mathematician jobs are found in research and development labs (http://www.bls.gov/oco/ocos043.htm).

Statisticians are involved in the design of surveys and experiments and the gathering, processing, and analysis of data. Statisticians apply their statistical knowledge to a variety of application domains including biology, business, economics, engineering, manufacturing, medicine, public health, psychology, marketing, and sports. A Master's degree is required for many jobs in statistics; however, statistician jobs in the Federal Government can be obtained with
A Bachelor’s degree. 30% of statisticians work for Federal, State, and local governments; other key employers include finance and insurance companies and scientific R&D firms (http://www.bls.gov/oco/ocos045.htm).

A wide range of jobs are applicable to those with a mathematical or statistical background. Some examples of specific jobs include:

Computer-related Jobs:
Students with a strong aptitude for and interest in computers and computer science may want to consider working as software engineer, computer systems analyst, or computer programmer.

Computer Programmers: Write, test, and maintain the detailed instructions, called programs that computers follow to perform their functions. Programmers also conceive and design programs for solving problems on a computer and to make computers do specific tasks (http://www.bls.gov/oco/ocos110.htm).

Computer Systems Analysts: Solve computer problems and use computer technology to meet the needs of an organization. They plan and develop computer systems for businesses and scientific institutions by choosing and configuring hardware and software (http://www.bls.gov/oco/ocos287.htm).

Software Engineers: Apply the principles of computer science and mathematical analysis to the design, development, testing, and evaluation of the software and systems that make computers work. Software engineers can be involved in the design and development of many types of software, including computer games, word processing and business applications, operating systems and network distribution, and compilers (http://www.bls.gov/oco/ocos267.htm).

Economic, Finance, and Business-related Jobs:
Actuaries: Help businesses assess the risk of certain events occurring and formulate policies that minimize the cost of that risk. Insurance companies are major employers of actuaries. Actuaries are also hired by pension plans, businesses, consulting firms, and government agencies (http://www.bls.gov/oco/ocos041.htm). To become an actuary, you must pass a series of exams; candidates who have successfully passed the first one or two exams prior to applying to full-time positions will have better employment prospects.

Buyers/Purchasing Agents: Buy the goods and services the company or institution needs to either resell to customers or for the establishment’s own use. They work to get the highest quality goods and services at the lowest possible cost to their companies, and to do this they study sales records and inventory levels of current stock, identify foreign and domestic suppliers, and keep abreast of changes affecting both the supply of, and demand for, needed products and materials (http://www.bls.gov/oco/ocos023.htm).

Economists: Study how society distributes resources, such as land, labor, raw materials, and machinery, to produce goods and services. They may conduct research, collect and analyze data, monitor economic trends, and/or develop forecasts (http://www.bls.gov/oco/ocos055.htm).

Financial Analysts and Personal Financial Advisors: Provide guidance to businesses and individuals in making investment decisions. They gather financial information, analyze it, and make recommendations (http://www.bls.gov/oco/ocos259.htm).
Market Research Analysts: Gather information so companies can understand what types of products people want and also help companies market their products to the people most likely to buy them. They predict future sales by gathering statistical data on past sales and competitors, and examining prices, sales, and methods of marketing and distribution (http://www.bls.gov/oco/ocos013.htm).

Operations Research Analysts: Plan business ventures and analyze options by using statistical analysis, data and computer modeling, linear programming, and other mathematical techniques. They help to allocate resources, measure performance, schedule, design production facilities and systems, manage the supply chain, set prices, coordinate transportation and distribution, and/or analyze large databases (http://www.bls.gov/oco/ocos044.htm). Computers are used extensively in this field.

Manufacturing-/Engineering-related Jobs:
Engineers: Apply the principles of science and mathematics to develop economical solutions to technical problems. Their work is the link between scientific discoveries and the commercial applications that meet societal and consumer needs (http://www.bls.gov/oco/ocos027.htm). Further coursework and training specific to the particular field chosen may be required.

Engineering roles commonly held by mathematicians/statisticians:
- **Industrial/Systems Engineers**: Determine the most effective ways to use the basic factors of production—people, machines, materials, information, and energy—to make a product or provide a service. To maximize efficiency, industrial engineers carefully study the product requirements, and design manufacturing and information systems to meet those requirements with the help of mathematical methods and models (http://www.bls.gov/oco/ocos027.htm).
- **Project Engineers**: Plan project work; organize a team to bring the task to fruition; control each of the steps along the way, including solving problems; and ultimately, are responsible for the final result. Dealing with uncertainty is all in a day's work, as is forecasting how long the undertaking will last, what it will cost and what problems might arise (http://www.graduatingengineer.com/resources/articles/20000614/Project-Engineering).
- **Quality Assurance Engineers/Analysts**: Responsible for assuring that the various products leaving a manufacturing agency, organization, or company are effective and free from defects, operational problems, and errors. Test and assess items under various working conditions, record findings, and troubleshoot problems (http://www.jobprofiles.org/busqaengineer.htm).

Logistics Analysts: Develop logistics plans that affect production, distribution, and inventory. Create and review procedures for distribution and inventory management to maximize customer satisfaction and minimize cost (http://swz.salary.com/salarywizard/layouthtmls/swzl_compresult_national_MM18000009.html#bottom).
Other Jobs:
Cryptanalysts: Analyze and decipher encryption systems—codes—designed to transmit military, political, financial, or law enforcement-related information (http://www.bls.gov/oco/ocos043.htm).

Other Occupations: There are other occupations outside the sciences that hire graduates of the mathematical sciences. Included in this group are occupations such as law clerk, air traffic controller, and legal assistant (http://www.careercornerstone.org/math/mathjobhunt.htm). Further coursework and training specific to the particular field chosen may be required.

Other Sciences /Health and Social Services: There are other occupations within the sciences where an education in mathematics may be applied. Included in this group are those working in meteorology, pharmacology, and biochemistry (http://www.careercornerstone.org/math/mathjobhunt.htm). Further coursework and training specific to the particular field chosen may be required.

Other Technical Areas: Many occupations require technical skills that a degree in mathematics provides. Included in this group are land surveyors, draftsmen, and electrical technicians (http://www.careercornerstone.org/math/mathjobhunt.htm). Further coursework and training specific to the particular field chosen may be required.

Research Mathematicians: In non-academic positions, research mathematicians conduct mathematical research in areas of interest to large corporations and various departments of government. These include the Department of Energy, various branches of the military, and security agencies. While the demand for non-academic research mathematicians has been shrinking in recent years, there still are positions available at national laboratories, the National Security Agency (NSA), and other government entities, as well as some large corporations. An advanced degree is usually required for these positions (http://math.arizona.edu/ugprogram/prospective/careers.html).

Science-related Jobs:
Biostatisticians: Develop and apply statistical techniques to scientific research in health-related fields, including medicine, epidemiology, and public health. Research problems are as diverse as the study of factors affecting heart and lung disease, testing new drugs to combat AIDS, assessing indoor air quality in schools, working with various cancer studies, evaluating dental health and dental procedures, evaluating psychiatric symptoms and drug and alcohol use, transplanting organs and bone marrow, and studying inner ear infection. Those with an advanced degree (Master’s and/or Ph.D.) in biostatistics will have the best employment opportunities (http://www.amstat.org/careers/biostatistics.cfm).

Physicists and Astronomers: Conduct research to understand the nature of the universe. These researchers observe, measure, interpret, and develop theories to explain celestial and physical phenomena using mathematics. They study the fundamental properties of the natural world and apply the knowledge gained to design new technologies. Because most jobs are in basic research and development, a doctoral degree is the usual educational requirement for physicists and astronomers (http://www.bls.gov/oco/ocos052.htm).
Teaching-related Jobs:

Middle and Secondary School Teachers – Teach at public and private middle and secondary schools. Must be licensed to teach in public schools; private schools do not require a license. Licensure requirements vary by state. Teachers in both public and private middle schools and high schools must have a bachelor’s degree, and for public schools must complete an approved teacher training program. Several states require teachers to get a Master’s degree in education within a specific timeframe after they start teaching (http://www.bls.gov/oco/ocos318.htm).

Postsecondary Teachers – Teach at 2-year and 4-year colleges and universities. Community college positions and part-time instructor positions at universities typically require a Master’s degree. Full-time university professors usually need a Ph.D. (http://www.bls.gov/oco/ocos66.htm).

Profiles of individuals working in math- and statistics-related jobs can be found at the following websites:

http://www.ams.org/early-careers/ - Early career profiles of mathematicians and statisticians based on industry type

http://www.careercornerstone.org/math/profiles/mathprofiles.htm - Profiles of mathematicians

http://www.careercornerstone.org/statistics/profiles/statprofiles.htm - Profiles of statisticians

Where Can I Work?

Organizations of all types need employees who can apply mathematical and statistical concepts to solve problems. Some specific examples are provided below.

Mathematicians:

The U.S. Department of Defense is the primary Federal employer, accounting for about 37 percent of the mathematicians employed by the Federal Government. Many of the other mathematicians employed by the Federal Government work for the National Aeronautics and Space Administration (NASA).

In the private sector, major employers include scientific research and development services and management, scientific, and technical consulting services. Some mathematicians also work for software publishers, insurance companies, and in aerospace or pharmaceutical manufacturing (http://www.bls.gov/oco/ocos043.htm).

A few examples of organizations that hire mathematicians:

(http://www.siam.org/careers/thinking/work.php)

- **Aerospace and transportation equipment manufacturers** such as The Aerospace Corporation, Boeing, Ford Motor Co., General Motors, Lockheed Martin, and United Technologies.

- **Chemical and pharmaceutical manufacturers** such as DuPont; GlaxoSmithKline; Kodak; Merck & Co., Inc.; Pfizer; and Wyeth.

- **Communications service providers** such as Clear Channel Communications, Qwest Communications, and Verizon.
• **Computer service and software firms** such as Adobe; Google, Inc.; Kuberre Systems; The MathWorks, Inc.; Mentor Graphics; Microsoft Research; Mosek; MSC Software Corporation; Palo Alto Research Center; Thomson Reuters; and Yahoo Research.

• **Consulting firms** such as Daniel H. Wagner Associates and McKinsey & Company.

• **Electronics and computer manufacturers** such as Bell Laboratories, Alcatel-Lucent, Hewlett-Packard, Honeywell, IBM Corporation, Motorola, Philips Research, and SGI.

• **Energy systems firms** such as Lockheed-Martin Energy Research Corporation and the Schatz Energy Research Center (SERC).

• **Engineering research organizations** such as AT&T Laboratories – Research; Exxon Research and Engineering; NEC Laboratories America, Inc.; Schlumberger-Doll Research; and Telcordia Technologies.

• **Federal government contractors** such as the Mitre Corporation and RAND.

• **Financial service and investment management firms** such as Citibank, Moody’s Corporation, and Prudential.

• **International government agencies** such as the Defence Science and Technology Organisation, DSTO (Australia); French Atomic Energy Commission, CEA/DAM; and National Research Council Canada.

• **Medical device companies** such as Baxter Healthcare, Boston Scientific, and Medtronic.

• **Nonprofit organizations** such as the American Institute of Mathematics (AIM) and SIAM.

• **Producers of petroleum and petroleum products** such as Exxon Research and Engineering; and Petróleo Brasileiro S/A, Petrobras.

• **Publishers** such as Birkhauser and Springer.

• **University-based research organizations** such as the Institute for Advanced Study, the Institute for Mathematics and its Applications (IMA), and the Mathematical Sciences Research Institute (MSRI).

• **U.S. government agencies** such as the Institute for Defense Analyses (IDA); NASA’s Institute for Computer Applications in Science and Engineering; National Institute of Standards and Technology (NIST); National Security Agency (DIRSNA); Naval Surface Warfare Center, Dahlgren Division; Supercomputing Research Center; and the U.S. Department of Energy.

• **U.S. government labs and research offices** such as the Air Force Office of Scientific Research, Lawrence Berkeley National Laboratory, Los Alamos National Laboratory, Oak Ridge National Laboratory, Pacific Northwest National Laboratory, and Sandia National Laboratories.

Statisticians:

About 20 percent of statistician jobs are in the Federal Government, where statisticians are concentrated in the Departments of Commerce, Agriculture, and Health and Human Services. Another 10 percent are found in State and local governments, including State colleges and universities. Most of the remaining jobs are in private industry, especially in scientific research and development services, insurance carriers, and pharmaceutical and medicine manufacturing (http://www.bls.gov/oco/ocos045.htm).
A few examples of organizations that hire statisticians:
(http://www.careercornerstone.org/statistics/statemploy.htm)

- **Communication companies** such as Adelphia Communications Corporation, Apple, Direct TV, Microsoft, and Verizon.
- **Insurance companies** such as Aetna, Inc.; Allstate Insurance Company; Liberty Mutual Insurance Company; Prudential Insurance Company; and State Farm Insurance Company.
- **Manufacturing companies** such as BAE Systems, Inc. and Ford Motor Company.
- **Market research firms** such as Aberdeen Group, Inc., Forrester Research, Inc., and Gartner.
- **Pharmaceutical and biotechnology companies** such as Abbott Laboratories; Amgen, Inc.; Bristol-Myers Squibb Company; Genentech; GlaxoSmithKline; Johnson & Johnson; Merck & Company; Procter & Gamble Company; and Wyeth Pharmaceuticals.
- **Scientific research and development firms** such as Abbott Laboratories, Johnson & Johnson, and Merck & Company.
- **State and local governments**
- **U.S. government agencies** such as U.S. Army Research Office; National Institute of Health; National Science Foundation; National Institute of Standards and Technology; National Security Agency; Office of Naval Research; United States Census Bureau; and U.S. Department of Energy, Office of Energy Research.

Where Are Math and Statistics Jobs Posted?

Full-time job resources (specific to math and statistics):

American Mathematical Society: Most postings are for PhD mathematicians/statisticians, but you can search “Business or Industry” under Employer Type to find jobs that may be applicable to those with a Bachelor’s and/or Master’s degree
http://www.ams.org/eims/eims-search.html

American Statistical Association: Statistics jobs
http://www.amstat.org/jobweb/index.cfm

Call to Serve: Describes types of Federal government jobs; provides tips on how to find and apply for Federal jobs and internships; includes a Federal Internship Directory
http://www.makingthedifference.org

DCJobs.com: Jobs in the Washington, DC area, including many related to intelligence analysis and defense
http://www.dcjobs.com

International Association of Financial Engineers: Quantitative finance jobs
http://iafe.org

http://www.jobcentral.com
Math-Jobs.com: Math and statistics job postings
http://www.math-jobs.com

MathJobs.org: University/College faculty jobs
http://www.mathjobs.org/jobs

Quant Finance Jobs.com: Quantitative finance jobs
http://quantfinancejobs.com

QUANTster: Quantitative finance jobs
http://www.quantster.com

Society for Industrial and Applied Mathematics: List of companies and institutions that employ mathematicians and computational scientists for full-time and/or co-op positions
http://www.siam.org/careers/internships.php

Society for Industrial and Applied Mathematics: Math and statistics job postings
http://jobs.siam.org/home/index.cfm?site_id=686

StatsCareers: Math and statistics job postings
http://www.statscareers.com

Studentjobs.gov: Federal Government internship/co-op positions and full-time entry-level positions; math and statistics job postings
http://www.usajobs.gov/studentjobs

USAJOBS: Federal Government jobs; math and statistics job postings
http://www.usajobs.gov

U.S. Office of Personnel Management: Salary and benefit information for jobs within the Federal government
http://www.opm.gov

Co-op/Internship resources (specific to math and statistics):

American Mathematical Society: Research Experience for Undergraduates (REU) Summer Programs
http://www.ams.org/employment/reu.html

American Mathematical Society: List of companies that offer internship/co-op opportunities for math and statistics undergraduates
http://www.ams.org/employment/internships.html

American Statistical Association: Internships in statistics
http://www.amstat.org/education/internships.cfm

Call to Serve: Describes types of Federal government jobs; provides tips on how to find and apply for Federal jobs and internships; includes a Federal Internship Directory
http://www.makingthedifference.org
JobCentral: Full-time and internship/co-op positions. Select “Browse Jobs by Occupation,” select “Computer & Mathematical,” under “Related Occupations” on the right-hand side choose from “Actuaries,” “Mathematicians,” “Operations Research Analysts,” “Statisticians,” etc… (From here, you can search for co-op positions posted within your selected occupation area by using the keywords “intern” and “co-op”).
http://www.jobcentral.com

National Science Foundation: NSF-sponsored REU programs
http://www.nsf.gov/crssprgm/reu/reu_search.cfm

Oak Ridge Institute for Science and Education: Opportunities for academic fellowships and scholarships, research experiences, and internships with the Oak Ridge Institute for Science and Education and Oak Ridge Associated Universities
http://see.orau.org

Partnership for Public Service: Federal Internship Directory – List of federal agencies hiring math/statistics interns/co-ops
http://www.makingthedifference.org/federalinternships/directory

Pathways to Science: Summer REU programs
http://www.pathwaystoscience.org/Summerresearch.asp

Studentjobs.gov: Federal Government internship/co-op positions and full-time entry-level positions; math and statistics job postings
http://www.usajobs.gov/studentjobs

Society for Industrial and Applied Mathematics: List of companies and institutions that employ mathematicians and computational scientists for full-time and/or co-op positions
http://www.siam.org/careers/internships.php

USA.gov for Science: Federal government internship and fellowship opportunities in science (includes mathematics)
http://www.science.gov/internships/undergrad.html

Other career-search resources (general):

BuffaloNiagraJobs.com: Entry- and experienced-level full-time jobs in Western New York State.
http://buffalonia.org/Home/OurRegion/GrowYourCareer

Indeed.com: Job search engine that allows users to find jobs posted on thousands of company websites and job databases
http://www.indeed.com

InternJobs.com: Entry-level jobs and internships
http://www.internjobs.com

Job-Hunt.org: Entry-level jobs and internships
http://www.job-hunt.org/interns.shtml

LinkedIn: Professional social networking site that includes a job database
http://www.linkedin.com

Project Ion: Summer internships in Central New York State
http://www.project-ion.com
<table>
<thead>
<tr>
<th>What Professional Associations Are Available?</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Mathematical Society - http://www.ams.org</td>
</tr>
<tr>
<td>American Statistical Association - http://www.amstat.org</td>
</tr>
<tr>
<td>Computing Research Association - http://cra.org</td>
</tr>
<tr>
<td>IEEE Computer Society - http://www.computer.org/pubs/computer/career/career.htm</td>
</tr>
<tr>
<td>Institute for Operations Research and the Management Sciences - http://www.informs.org</td>
</tr>
<tr>
<td>International Association of Financial Engineers - http://iafe.org</td>
</tr>
<tr>
<td>Mathematical Association of America - http://www.maa.org</td>
</tr>
<tr>
<td>National Council of Teachers of Mathematics - http://www.nctm.org</td>
</tr>
<tr>
<td>National Institute of Statistical Sciences - http://www.niss.org</td>
</tr>
<tr>
<td>Society for Industrial and Applied Mathematics - http://www.siam.org</td>
</tr>
<tr>
<td>Society for Mathematical Biology - http://www.smb.org</td>
</tr>
<tr>
<td>Society of Actuaries - http://www.soa.org</td>
</tr>
<tr>
<td>Young Mathematicians’ Network - http://concerns.youngmath.net</td>
</tr>
</tbody>
</table>