Site-wide links

Rochester Institute of Technology logo

These materials are copyright Rochester Institute of Technology.

www.rit.edu

Copyright, disclaimer, and contact information, available via the links in the footer of our site.

Part-time & Graduate Enrollment Services

actn-question-header
liveperson actn-apply actn-mail

Microelectronics Manufacturing Engineering ME

Program overview

The master of engineering in microelectronics manufacturing engineering provides a broad-based education for students with a bachelorís degree in traditional engineering or other science disciplines who are interested in a career in the semiconductor industry. This 30 credit hour program is awarded upon the successful completion of six core courses, two elective courses, a research methods course, and an internship. Under certain circumstances, a student may be required to complete more than the minimum number of credits.

Microelectronics

The microelectronics courses cover major aspects of integrated circuit manufacturing technology, such as oxidation, diffusion, ion implantation, chemical vapor deposition, metalization, plasma etching, etc. These courses emphasize modeling and simulation techniques as well as hands-on laboratory verification of these processes. Students use special software tools for these processes. In the laboratory, students design and fabricate silicon MOS and bipolar integrated circuits, learn how to utilize most of the semiconductor processing equipment, develop and create a process, and manufacture and test their own integrated circuits.

Microlithography

The microlithography courses are advanced courses in the chemistry, physics, and processing involved in microlithography. Optical lithography will be studied through diffraction, Fourier, and image-assessment techniques. Scalar diffraction models will be utilized to simulate aerial image formation and influences of imaging parameters. Positive and negative resist systems as well as processes for IC application will be studied. Advanced topics will include chemically amplified resists; multiple-layer resist systems; phase-shift masks; and electron beam, X-ray, and deep UV lithography. Laboratory exercises include projection-system design, resist-materials characterization, process optimization, and electron-beam lithography.

Manufacturing

The manufacturing courses include topics such as scheduling, work-in-progress tracking, costing, inventory control, capital budgeting, productivity measures, and personnel management. Concepts of quality and statistical process control are introduced. The laboratory for this course is the student-run factory functioning within the department. Important issues such as measurement of yield, defect density, wafer mapping, control charts, and other manufacturing measurement tools are examined in lectures and through laboratory work. Computer-integrated manufacturing also is studied in detail. Process modeling, simulation, direct control, computer networking, database systems, linking application programs, facility monitoring, expert systems applications for diagnosis and training, and robotics are supported by laboratory experiences in the integrated circuit factory. An online version of this program exists for engineers employed in the semiconductor industry. Please refer to RITís Online Guide for details.

Internship

The program requires students to complete an internship. This requirement provides a structured and supervised work experience that enables students to gain job-related skills that assist them in achieving their desired career goals.

Students with prior engineering-related job experience may submit a request for credit by experience with the department head. Supported by a letter from the appropriate authority substantiating the studentís job responsibility, duration, and performance quality, a student may be able to waive the internship if a previous work experience fulfills this requirement.

For students who are not working in the semiconductor industry while enrolled in this program, the internship can be completed at RIT. It involves an investigation or study of a subject or process directly related to microelectronic engineering under the supervision of a faculty adviser. An internship may be taken any time after the completion of the first semester, and may be designed in a number of ways.  At the conclusion of the internship, submission of a final internship report to the faculty adviser and program director is required.

Program outcomes

After completing the program, students will be able to:

Curriculum

Microelectronics manufacturing engineering, ME degree, typical course sequence

CourseSem. Cr. Hrs.
First Year
MCEE-601 Microelectronic Fabrication 3
MCEE-605 Lithography Materials and Processes 3
MCEE -603 Thin Films 3
  Graduate Electives 6
MCEE-795 Microelectronics Research Methods 1
MCEE -732 Evaluation of Microelectronic Manufacturing 3
MCEE-602 VLS Process Modeling 3
MCEE-615 Nanolithography Systems 3
MCEE-795 Microelectronics Research Methods 1
MCEE-777 Microelectronic Engineering Internship 4
Total Semester Credit Hours 30

Career Outcomes

Job Titles

Applications engineer, device engineer, process development engineer, process engineer, product engineer

Functions

Integrated circuit (IC) processing and design

Recent Employers

Advanced Micro Devices, ATMEL, IBM, Intel Corporation, Micron Technology, Motorola, Triquint


Related Links


Program(s) You Might Also Consider