Introducing and Illustrating Biofeedback to Young People with Autism Spectrum Disorder
Eric Hunt¹, Daniel Hicks¹, Anna E. Hope², Brian L. Garrison², Stephen Jacobs³, Laurence I. Sugarman²
School of Interactive Games and Media¹, Center for Applied Psychophysiology and Self-regulation², and MAGIC Center³

Background
People with Autism Spectrum Disorder (ASD) exhibit:
- Persistent deficits in social communication and interaction across contexts
- Restricted, repetitive patterns of behavior, interests, or activities
- Impairment in social, occupational, or other important areas of current functioning.

Autonomic dysregulation characterized by increased sympathetic arousal and decreased vagal tone is posited to be a unifying factor. Biofeedback-based autonomic regulation training may be beneficial.

DyFSS
- These signals are dynamically and differentially weighted to determine the user’s overall comfort level and reinforce their autonomic balance.
- Includes an array of graphical interfaces to display data in a more engaging way.
- Non-Provisional patent applied for 14,740,980

Biofeedback Training
- A strategy to gain and improve control of physiological functions: a physiological mirror
- The user is connected to multiple sensors that signal physiological functions
- Signals are processed and displayed (fed back) to the user as a way to learn to discern and control physiologic processes.
- With practice, the user is able to generalize self-regulation without biofeedback

Autonomic Regulation Training (ART) for ASD
- Biofeedback training using proxies for autonomic functions may help people with ASD self-regulate their symptoms.
- People with ASD have diverse autonomic “fingerprints.”
- ART for ASD must factor in autonomic diversity

How It Works

<table>
<thead>
<tr>
<th>SCL and RSP</th>
<th>TMP and HRV</th>
</tr>
</thead>
<tbody>
<tr>
<td>🤨</td>
<td>😊</td>
</tr>
<tr>
<td>😥</td>
<td>😊</td>
</tr>
</tbody>
</table>

Weighting Algorithm
- For each signal, relative value determined.
- Signals weighted based upon their contribution to the total comfort level.
- Signals moving in desired direction enhanced, reinforcing user control.
- Weighted signals summed, transferred to “Comfort Level” bar graph.
- Combined signals sum to idealized max of 100%

Our Improvements

Usability
- Fixed algorithm and incorrect readings, added timeline and displaying player name, and screen resolution compatibility.
- Focus Panel

Functionality
- Added data retrieval, user-determined partitioning of graphs, altering of graph perspective, and improvements to log files (fast-forwarding, timeline, markers).

Interactivity
Stress Destroyer Game
- Updated graphics and animations, added difficulty modes, sounds effects, music, and powerups.

Future Applications
- Clinical research trials, further testing and refining with clinical integration, packaging software for standalone, portable DyFSS算法 may be used in other settings.

References