Upper Extremity Motion Capture System

Biomechatronic Learning Laboratory

Mission Statement
Design a biomechatronic device that monitors upper extremity motion via physiological and biophysical data to benefit biomedical research in the electrical engineering department at RIT.

Core Customer Needs
- Motion of arm in three degrees of freedom (DOF)
 1. Elbow angle
 2. Shoulder angle in sagittal plane
 3. Shoulder rotation in transverse plane
- Measure EMG activity of four muscle groups in arm
- Measure angular position with time
- Wireless data transmission
- Real time display of data (user interface) with data storage

The Team
- Alan Smith (EE)
- Jonathan Guerrette (ME)
- Daniel Chapman (CE)
- Adey Gebregiorgis (EE)
- Melissa Gilbert (ME)
- Pooja Nanda (EE)

Concept/Design Methods

Platform
- Supports brace to maintain mobility of system
- Allows for motion capture of subject in sitting or standing position

Surface Electromyography (sEMG)
- Measurement of electrical potential difference across a muscle fiber
- Surface electrodes are used to collect the data from biceps, triceps, deltoid and brachioradialis muscles

Rotary Potentiometers
- Shaft of the potentiometer rotates with one adjacent part of the brace while the body remains stationary
- Output voltage is recorded which corresponds linearly to an angle measurement
- Mfd. by P3 America Inc.

BioRadio®
- Bioinstrumentation device used to transmit EMG and motion data to computer
- Mfd. by CleveMed

PCB for Power Conditioning
- Layout designed to verify constant 4 Volt supply to potentiometers throughout the use of voltage regulators from 9 Volt battery
- Creates a 2 Volt virtual ground used as reference for the BioRadio
- Includes one output for voltage monitoring

Brace
- Uniquely designed with aluminum to fit male and female 95th percentile
- Housing for rotary potentiometers

Software
- Data capture system to display measurements in real time using C++ and Qt
- Data processing includes filters and conversion of potentiometer voltages to joint angles in degrees using linear regression model
- Supports animation which mirrors subject’s upper limb motion

Testing
- Mobile
- Durable
- Adjustable for different individuals
- Motion of right or left arm
- Lightweight brace
- Able to add weights to brace

Electrical
- Proper voltages are verified on PCB
- Voltages provided to the potentiometers are monitored

Mechanical
- Mobile
- Durable
- Adjustable for different individuals
- Motion of right or left arm
- Lightweight brace
- Able to add weights to brace

Electrical
- Proper voltages are verified on PCB
- Voltages provided to the potentiometers are monitored

Conclusion/Future Work
- Project was successfully completed meeting the majority of the customer’s needs
- System will be used in the Biomechatronic Learning Lab
- Signal processing algorithms will be created from the collected data
- Algorithms will serve to control robotic arm
- This research will be applied to prosthetics and other assistive devices

Acknowledgements
- Dr. Edward Brown, the team’s faculty guide and Assistant Professor of Electrical Engineering at RIT
- Chris Platt, College of Imaging Arts and Sciences at RIT
- Dr. Daniel Phillips with Kate Gleason College of Engineering at RIT
- Edward Hanzlik, Adjunct Professor at RIT
- Dave Hathaway, Rob Kraynik and Steve Kosciol with the Mechanical Engineering machine shop
- This project is supported by a grant from the Semiconductor Industry Association and by the National Science Foundation CISE division under Award No. IIS-0705130 and Award No. IIS-0748418.