Master of Science in Sustainable Engineering

Graduate Manual

Industrial and Systems Engineering Department
Kate Gleason College of Engineering
Rochester Institute of Technology

81 Lomb Memorial Drive
Rochester, NY 14623-5603

Phone: (585) 475-2598
Fax: (585) 475-2520
Web Address: www.rit.edu/ise

Graduate Program Director: Dr. Brian Thorn
bkteie@rit.edu
(585) 475-6166

ISE Department Head: Dr. Scott Grasman
segeie@rit.edu
(585) 475-2598

(Revised August 18, 2015)
1. Master of Science Degree in Sustainable Engineering

Sustainable Engineering refers to the integration of social, environmental, and economic considerations into product, process, and energy system design methods. Additionally, sustainable engineering encourages the consideration of the complete product and process lifecycle during the design effort. The intent is to minimize environmental impacts across the entire lifecycle while simultaneously maximizing the benefits to social and economic stakeholders. The MS in Sustainable Engineering is multidisciplinary and managed by the Industrial and Systems Engineering (ISE) Department.

The Master of Science program in Sustainable Engineering builds on RIT’s work in sustainability research and education, and offers students the flexibility to develop tracks in areas such as renewable energy systems, systems modeling and analysis, product design, and engineering policy and management. Coursework is offered on campus and is available on a full-time or part-time basis.

2. Admission Requirements

Admission to the Sustainable Engineering Graduate Program is determined based on the full evaluation of the application and accompanying material including undergraduate degree program, transcript, and GPA, GRE scores, TOEFL scores (if required), letters of recommendation, and statement of purpose. The GRE is required for all students applying to the MS program.

Although applications may be submitted at any time, to be sure that your application will receive full consideration for admission to RIT in the fall semester of the next academic year, the following deadlines should be observed:

Application Timeline for Fall Semester:
January 15: All application materials must be received
March 31: Notification of admission decision/graduate assistantship decision

The general entrance requirements consist of a BS degree in engineering, technology, mathematics or science, and a minimum equivalent cumulative undergraduate GPA of 3.00/4.00. A minimum TOEFL score of 80 is required for students that do not have English as their first language. For students without an engineering degree, some bridge coursework in the basic engineering sciences may be necessary prior to full admission.

3. Graduate Assistantships and Scholarships

Application for Graduate Assistantships and Scholarships can be made by checking the appropriate box on the RIT Graduate School Application indicating interest in an assistantship. Applications received before January 15, will be given priority for assistantships to be awarded for the following academic year. Only full-time MS students will be considered for assistantships. Departmental graduate assistantships may be awarded to new students for the current academic year on a competitive basis that depends on the current graduate student
population, the number of applicants, and the strength of the graduate student application. Graduate assistantships awarded to new students are only guaranteed for the designated enrollment date. If a student elects to defer admission, the student must reapply for a graduate assistantship. Graduate assistantships for continuing students will be evaluated on a semester basis. These assistantships will be awarded on a competitive basis based on progress toward the degree including courses taken, GPA, progress toward thesis, endorsement of advisor, and performance of current assistantship duties. Departmental support for graduate students is limited to two years from the start of enrollment.

3.1 Student Expectations for Graduate Assistantships and Scholarships

The ISE Department is fortunate to be able to provide a number of graduate scholarships and assistantships to Master of Science students, and tries to be as generous as possible in funding graduate students to study at RIT. From the perspective of the ISE Department, this funding is an investment in graduate students and the research work that students will produce while working with the ISE faculty.

The expectation for students receiving scholarships and assistantships includes (but is not limited to) the following:

- Being present at RIT during the academic semesters including the weeks of exams and excluding official institute breaks (between semesters, winter break, etc.). The RIT academic calendar is announced well in advance of each academic year. Students must consult this when making travel reservations, etc.
- Attend and perform well in classes.
- Make good progress towards completing the degree program within two academic years by taking classes, establishing a thesis topic, establishing a thesis advisor and committee, submitting a plan of study, submitting a thesis proposal, etc.
- Behaving in an ethical manner inside and outside of class.

The additional expectations for students receiving assistantships include (but are not limited to) the following:

- Working the scheduled time according to your assistantship (e.g. 10 hours/week). In some cases, such as teaching assistantship assignments, the work may vary from week to week, but should average out to this quantity over the semester.
- Report regularly to the faculty advisor administering the assistantship.
- Perform work to the best of your ability and meet due dates for assigned tasks.

Graduate students should be aware that not fulfilling the expectations of graduate assistantships may result in a corresponding reduction in pay. Furthermore, the items outlined above will be taken into account when evaluating graduate scholarship and assistantship awards in future semesters.
The ISE Department desires to have the best department possible, and graduate students are essential to making this happen. We appreciate the hard work graduate students and hope that they will benefit from this education and experience.

4. Graduation Requirements

The MS degree will be awarded upon successful completion of a minimum of 33 units that is equivalent to 9 courses and 6 units of thesis research. All MS students are also required to complete the Graduate Thesis Seminar course sequence (ISEE 795 and ISEE 796).

In accordance with Institute policy, all graduate programs must be completed within seven years after taking the first graduate course(s) that applies to the program. Exceptions to the seven year rule require a petition to the Dean of Graduate Studies with an explanation as to why the student will be unable to complete the program within seven years. This request must be accompanied by a letter of from the Director of Sustainable Engineering Graduate Programs. The request must be made prior the reaching the seven year limit. Approval is not automatic.

4.1 MS Advisory Committee

The formation of the MS advisory committee is critical to the timely completion of the MS degree. The Graduate Program Director initially serves as a student’s advisor. Prior to the completion of the first year of study, the student must form an advisory committee as follows:

Step 1. The student should initiate the formation of their committee by selecting a primary thesis advisor from among the ISE Faculty (Professor, Associate Professor, or Assistant Professor) based upon the student’s interests and the agreement of the new advisor. In the event that the thesis topic is interdisciplinary, the student may select a second primary advisor from among RIT faculty within or outside of the ISE Department. These two individuals would then serve as co-advisors to the student.

Step 2. The student should then, in conjunction with their advisor, form a thesis committee. The committee should be comprised of at least two ISE faculty members (Professors, Associate Professors, or Assistant Professors) including the advisor. The remainder of the committee may consist of RIT faculty (including instructors or lecturers) or industrial personnel from outside RIT.

Note: In the unlikely event that the need arises for a student to change the composition of their committee; the student should submit written justification signed by all previous committee members to the ISE Department and previous committee members. The student should follow Steps 1 and 2 to re-form their committee.

4.2 Plan of Study

The Graduate Program Coordinator initially serves as a student’s advisor to select courses. Prior to the completion of the first semester, the student’s Plan of Study must be mapped out
with and approved by the student's MS advisor using the appropriate plan of study form in the Appendix. An approved plan of study must be submitted to the ISE office to be placed in the student’s department file.

The MS degree requires that students complete a minimum of 33 units of study consisting of at least 9 three-unit courses, the two-course sequence of ISE Graduate Seminars, and 6 units of thesis research. (See Section 5 for thesis requirements.)

The coursework must meet the following requirements:

- **The following required courses:**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISEE-771</td>
<td>Engineering of Systems I</td>
</tr>
<tr>
<td>ISEE-785</td>
<td>Fundamentals of Sustainable Engineering</td>
</tr>
<tr>
<td>ISEE-786</td>
<td>Lifecycle Assessment</td>
</tr>
<tr>
<td>ISEE-787</td>
<td>Design for the Environment</td>
</tr>
<tr>
<td>MECE-629</td>
<td>Renewable Energy Systems</td>
</tr>
</tbody>
</table>

- 1 Social Context elective
- 1 Technology elective
- 2 Engineering electives
- The two course sequence of ISE Graduate Seminar:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISEE-795</td>
<td>Graduate Seminar I</td>
</tr>
<tr>
<td>ISEE-796</td>
<td>Graduate Seminar II</td>
</tr>
</tbody>
</table>

- **ISE Thesis Research - 6 units**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISEE-790</td>
<td>Research and Thesis</td>
</tr>
</tbody>
</table>

A list of potential graduate courses for meeting these degree requirements appears in the Appendix. Please note that not all courses may be appropriate for all students/plans of study and must be approved by the MS thesis advisor through the plan of study approval process. Equivalent or more advanced courses in the list of core course areas may be substituted with the approval of the advisor. In addition, special topics or independent study courses can be used to satisfy program requirements. This requires the consent of the Sustainable Engineering program director.

5. Thesis Requirements

5.1 Graduate Seminars

To aid students in the development of a thesis topic, students will complete the following two course sequence of seminars, ISEE-795 Graduate Seminar I and ISEE-796 Graduate Seminar II. The seminars introduce students to research methods and present the state of the art in engineering research. The two-course sequence is designed to promote discussion and interaction on research topics and to present research methods such as conducting critical reviews of research literature, initiating background research on a thesis topic, and preparing a formal thesis proposal.
At the conclusion of the first course students are expected to complete a critical literature review and plan of study for the Master of Science degree. At the end of the second course, students are expected to submit a formal thesis proposal and associated literature review.

The seminar will include invited speakers from within and outside of RIT to present their research work and to promote discussion, cultivate ideas, and promote research. The dates for the seminar speakers will be announced and attendance by all MS Sustainable Engineering students is expected.

5.2 Thesis Proposal

A thesis proposal is a document that each MS Sustainable Engineering student will develop to propose to their thesis committee the research problem that they plan to investigate along with the problem scope and solution methodology that they plan to use. The purpose of the thesis proposal is to ensure that students have defined a sufficient problem for the MS degree; the scope of the problem is defined as to be able to be completed in a reasonable amount of time (typically 9-12 months); and that the methodology proposed can be implemented by the student with the resources available to RIT. The student should submit a written thesis proposal to the thesis committee at least 2 weeks prior to thesis proposal defense.

The thesis proposal should include the following:

- Title
- Committee Members
- Abstract
- Formal problem statement / definition
- Relevant literature review
- Scope of work
- Proposed methodology
- Proposed timeline
- Hardware requirements
- Software requirements
- Space requirements
- Bibliography

The student will defend their thesis proposal to their thesis committee. Once a thesis proposal has been successfully defended and accepted by the committee, requests to change the scope of work will generally not be granted.

The student should submit a written thesis proposal, approved and signed by all committee members, to the ISE office to be placed in the student’s department file. This should be completed at least 6 months prior to the student’s expected thesis defense date.
5.3 Thesis

After approval from their thesis advisor, the student should submit a complete copy of their thesis to the committee at least 3 weeks prior to the thesis defense.

Students are strongly encouraged to prepare a paper in a format suitable for publication in a refereed journal prior to thesis defense.

The student should schedule, announce and publicize the thesis defense 2 weeks prior to the defense date.

The student should orally defend their thesis before their thesis committee. Generally, thesis defenses will be open to the Institute.

The student’s thesis committee will judge the thesis using the following options: accept thesis, accept thesis with revisions, accept thesis with revisions and re-defend, or reject thesis. Dependent upon the outcome and if the need arises, the thesis advisor will facilitate the revision process and act to develop a consensus amongst the committee. If the committee rejects the thesis, the student should explore non-thesis degree options (e.g., Master of Engineering degree).

Once the thesis has been successfully defended and all revisions have been completed, the student should submit bound and appropriately formatted copies of their thesis to: Library, ISE Department, and each committee member. A copy of the receipt from the library binding department should be given to the ISE department as proof of completion and eligibility of certification. An electronic copy of the thesis is also required to be submitted to the library for placement in the RIT Digital Media Library. For additional information on thesis binding and electronic submission of the thesis to the library please see:

http://library.rit.edu/graduate-student-support
6. Cooperative Education (Co-op)

Cooperative education (Co-op) has become an integral part of RIT’s undergraduate programs in the KGCOE. However, co-op is not a required part of the Sustainable Engineering graduate programs. To be eligible for co-op, students must complete the following process:

- Meet with the Sustainable Engineering Graduate Program Director to assess how co-op will affect the student’s plan of study.
- If approved, register for Co-op (ISEE-499) in the ISE Office.
- Report the co-op on the Co-op office’s website.
- After completing the co-op assignment and evaluations, meet with the ISE academic advisor to discuss and approve co-op evaluations. Approved and signed evaluations should be returned to the ISE office so a grade may be recorded.

Note that all co-op opportunities may not be appropriate for every student or their plan of study.

For international students, additional co-op rules and guidelines are available through the International Student Services Office. In particular, please be aware that co-op should be done during (not after) a student’s degree program, and that extensions of program forms such as I-20 will not approved for the purposes of co-op.

For students receiving funding in the form of scholarships or assistantships from the ISE Department, students that take co-op positions that cause them not to make good progress towards completing the degree program within two academic years may receive a reduction or discontinuation of funding.
Appendix

Potential Graduate Courses

The list of potential courses below represents courses that will earn credit as valid graduate courses. **It is required that you complete a plan of study approved by your advisor even if the courses you plan to select appear on the approved list.** The Sustainable Engineering Graduate Program Director will continue to entertain other courses on a case-by-case basis. Courses will only be accepted if the student has discussed the choice with his/her advisor and received permission from the advisor in writing. Students should not assume that a graduate course deemed appropriate for one will be appropriate for all.

Engineering Electives
- ISEE-601 Systems Modeling and Optimization
- ISEE-610 Systems Simulation
- ISEE-626 Contemporary Production Systems
- ISEE-660 Applied Statistical Quality Control
- ISEE-661 Linear Regression Analysis
- ISEE-682 Lean Six Sigma Fundamentals
- ISEE-701 Linear Programming
- ISEE-702 Integer and Nonlinear Programming
- ISEE-703 Supply Chain Management
- ISEE-704 Logistics Management
- ISEE-711 Advanced Simulation
- ISEE-720 Production Control
- ISEE-723 Global Facilities Planning
- ISEE-728 Production Systems Management
- ISEE-730 Biomechanics
- ISEE-731 Advanced Topics in Human Factors and Ergonomics
- ISEE-732 Systems Safety Engineering
- ISEE-740 Design for Manufacture and Assembly
- ISEE-741 Rapid Prototyping and Manufacturing
- ISEE-745 Manufacturing Systems
- ISEE-750 Systems and Project Management
- ISEE-752 Decision Analysis
- ISEE-760 Design of Experiments
- ISEE-771 Engineering of Systems I
- ISEE-772 Engineering of Systems II
- ISEE-789 Special Topics
- ISEE-799 Independent Study
- MECE-606 Systems Modeling
- MECE-731 Computational Fluid Dynamics
- MECE-733 Sustainable Energy Management
- MECE-738 Ideal Flows
- MECE-739 Alternative Fuels and Energy Efficiency
- MECE-744 Nonlinear Control Systems
- MECE-751 Convective Phenomena
- MECE-754 Fund. of Fatigue and Fracture Mechanics

Social Context Electives
- ECON-620 Environmental Economics
- ECON-810 Economics of Sustainability
- INTB-730 Cross-Cultural Management
- MGMT-710 Managing for Environmental Sustainability
- PUBL-610 Technological Innovation & Public Policy
- PUBL-630 Energy Policy
- PUBL-789 Special Topics (requires prior approval)

Technology Electives
- ESHS-613 Solid & Hazardous Waste Management
- ESHS-614 Industrial Wastewater Management
- ESHS-615 Air Emissions Management
- ESHS-720 Environmental Health & Safety Management
- ESHS-725 EHS Accounting & Finance
- ESHS-755 Corporate Social Responsibility
- ESHS-765 Product Stewardship
- PACK-730 Packaging and the Environment
Master of Science in Sustainable Engineering (SUSTAIN-MS)
Graduate Student Plan of Study

Name: __________________________________ RIT ID: ____________________
Address: __________________________________
Ph(w): ____________________ Ph(h): ____________________
__
Email: ____________________________________

Entry Term: ________________ 7-Year Limit: _____________

<table>
<thead>
<tr>
<th>Course</th>
<th>Semester</th>
<th>Grade</th>
<th>Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ISEE-771 Engineering of Systems I</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2. ISEE-785 Fundamentals of Sustainable Engineering</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3. ISEE-786 Lifecycle Assessment</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4. ISEE-787 Design for the Environment</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5. MECE-629 Renewable Energy Systems</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6. Social Context elective</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>7. Technology elective</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>8. Engineering elective</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>9. Engineering elective</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ISEE-790 Research and Thesis</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>ISEE-795 Graduate Seminar I</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ISEE-796 Graduate Seminar II</td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Total 33

Thesis

Title: __

Proposal Submission Date: ________________

Thesis Advisor: __________________________ Signature: __________________________ Date:_____

Committee Member: __________________________

Committee Member: __________________________

Defense Date: __________________________ Completion Date: __________________________

* Course not required to fulfill degree requirements

Ending GPA: __________