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ABSTRACT 

An approach to in-situ wavefront aberration measurement is explored.  The test is applicable to sensing aberrations from 
the image plane of a microlithography projection system or a mask inspection tool.  A set of example results is 
presented which indicate that the method performs well on lenses with a Strehl ratio above 0.97.  The method uses 
patterns produced by an open phase figure1 to determine the deviation of the target image from its ideal shape due to 
aberrations.  A numerical solution in the form of Zernike polynomial coefficients is reached by modeling the object 
interaction with aberrated pupil function using the nonlinear optimization routine over the possible deformations to give 
an accurate account of the image detail in 2-D.  The numerical accuracy for the example below indicated superb 
performance of the chosen target shapes with only a single illumination setup. 
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1. INTRODUCTION 

Aberrations are directly related to loss of contrast in the image.  Modern lithography lenses require optical path 
tolerances on the order of several nanometers over extremely large apertures.  If the primary aberrations are well-
corrected, it is important to know how much wavefront distortion remains.  Higher order aberrations are therefore of 
consequence due to their increased contribution to the total root mean square (rms) wavefront error in large pupils. 

Measuring the optical aberrations in microlithography projection systems, such as stepper or aerial image microscope, 
when working from the image space is not trivial. Zernike polynomials are commonly used for the wavefront 
description.  For many inverse aberration extraction methods however, it is generally thought that as long as the Zernike 
set is used there will be some aliasing2 in the terms (i.e. higher order terms are indistinguishable from low order 
counterparts of the same azimuthal order and symmetry).  Overall, the approaches currently being used to measure 
aberrations in-situ are image-based and estimate the wavefront phase either from the gradients4,5,6 or from the intensity 
point spread functions.7  These techniques have been modified and adapted in numerous ways by a number of 
contributors,3–10  and include analysis of resist images or aerial images in their specific context.  These processes often 
require a linear system representation when analyzing the response to aberrations.  While the image formation in 
lithography systems is always non-linear, some linearity assumptions are valid to some degree.  In certain tests, 
correction factors are applied to enforce linearity in the model, including lumping the aberration terms of the same type 
together. 

We investigate a nonlinear solution to this problem of obtaining high order coefficients using numerical methods.  The 
number of parameters to be estimated is large.  We want to reliably measure up to and including the 9th order Zernike 
terms (35 individual aberrations) using a compact (small footprint) target and fast setup.  The goal is to detect low levels 
of aberration (of Strehl above 0.9) at high resolution (less than 0.002 waves).  Various methods, where image data is 
used for aberration retrieval, may require very intensive test cycles.  For practical applications it is necessary to 
minimize the amount of data collection for input.  In some situations, steppers are detuned and additional aberrations are 
introduced as a quantitative way to characterize the method performance in the optical system.  In order to estimate the 
sensitivity of our model, a simulation study is performed with a synthetic lens, whose aberrations are precisely known. 

The organization of this paper is as follows.  We start with an introduction to the use of Zernike polynomials in studying 
optical aberrations (section 2). Our analysis and discussion will be centered on the corresponding wavefront aberrations.  
In section 3 the method of nonlinear least squares will be introduced as a way of obtaining the aberration coefficients.  



An application of the proposed method and a simulation study will be presented in sections 4 and 5.  It will be shown 
that Zernike coefficients can be estimated directly from the image data by way of object–image conjugation.  Finally, 
the overall performance of our reconstruction method will be reviewed for accuracy and errors will be evaluated. 

2. ZERNIKE POLYNOMIALS 

We use the Zernike aberration polynomials to expand the phase as they are the standard set for analyzing the optical 
elements used in lithography applications.  The wavefront shape is modeled as a weighted sum of polynomial functions: 
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where Zi(ρ,θ) is the ith Zernike polynomial function and αi its coefficient.  Here ρ and θ are the coordinates in the exit 
pupil.  The Zernike aberrations have been described by many authors11–13 although there are considerable variations in 
notation conventions.  The index i, degree n, angular frequency m, and the polynomial in polar representation are listed 
in Table 1 up to 9th order, while more extensive lists are available from other references.  The ordering of polynomials 
in Table 1 follows a singular indexing scheme of Optical Sciences Center, University of Arizona.11  The piston is the 0th 
term on the list.  Figure 1 shows plots of the Zernike polynomial functions Zi(ρ,θ) ordered such that the radial degree n 
changes vertically and frequency m changes horizontally.  It can be seen that as the index increases, the shapes vary 
slower on the inner part and faster on the periphery of the pupil.  This means that if the expansion is truncated, it would 
not carry the maximum amount of information about the wavefront. 

 

Table 1: Zernike terms Zi for i=0 to 35 (up to the ninth order) in polar coordinates  

i Form of the polynomial (n,m) Name 

0 1 (0,0) Piston (not used) 
1 2ρcos(θ) (1,1) Tilt x (about y-axis) 
2 2ρsin(θ) (1,1) Tilt y (about x-axis) 
3 √3 (2ρ2−1) (1,0) Power 
4 √6 ρ2 cos(2θ) (2,2) Astigmatism x (0°) 
5 √6 ρ2 sin(2θ) (2,2) Astigmatism y (45°) 
6 √8 (3ρ3−2ρ) cos(θ) (2,1) Coma x 
7 √8 (3ρ3−2ρ) sin(θ) (2,1) Coma y 
8 √5 (6ρ4−6ρ2+1) (2,0) Primary Spherical 
9 √8 ρ3 cos(3θ) (3,3) Trefoil x 
10 √8 ρ3 sin(3θ) (3,3) Trefoil y 
11 √10 (4ρ4−3ρ2) cos(2θ) (3,2) Secondary Astigmatism x 
12 √10 (4ρ4−3ρ2) sin(2θ) (3,2) Secondary Astigmatism y 
13 √12 (10ρ5−12ρ3+3ρ) cos(θ) (3,1) Secondary Coma x 
14 √12 (10ρ5−12ρ3+3ρ) sin(θ) (3,1) Secondary Coma y 
15 √7 (20ρ6−30ρ4+12ρ2−1) (3,0) Secondary Spherical 
16 √10 ρ4 cos(4θ) (4,4) Tetrafoil x 
17 √10 ρ4 sin(4θ) (4,4) Tetrafoil y 
18 √12 (5ρ5−4ρ3) cos(3θ) (4,3) Secondary Trefoil x 
19 √12 (5ρ5−4ρ3) sin(3θ) (4,3) Secondary Trefoil y 
20 √14 (15ρ6−20ρ4+6ρ2) cos(2θ) (4,2) Tertiary Astigmatism x 
21 √14 (15ρ6−20ρ4+6ρ2) sin(2θ) (4,2) Tertiary Astigmatism y 
22 4 (35ρ7−60ρ5+30ρ3−4ρ) cos(θ) (4,1) Tertiary Coma x 
23 4 (35ρ7−60ρ5+30ρ3−4ρ) sin(θ) (4,1) Tertiary Coma y 
24 3 (70ρ8−140ρ6−90ρ4−20ρ2+1) (4,0) Tertiary Spherical 
25 √12 ρ5 cos(5θ) (5,5) Pentafoil x 
26 √12 ρ5 sin(5θ) (5,5) Pentafoil y 
27 √14 (6ρ6−5ρ4) cos(4θ) (5,4) Secondary Tetrafoil x 
28 √14 (6ρ6−5ρ4) sin(4θ) (5,4) Secondary Tetrafoil y 
29 4 (21ρ7−30ρ5+10ρ3) cos(3θ) (5,3) Tertiary Trefoil x 
30 4 (21ρ7−30ρ5+10ρ3) sin(3θ) (5,3) Tertiary Trefoil y 
31 √18 (56ρ8−105ρ6+60ρ4−10ρ2) cos(2θ) (5,2) Quaternary Astigmatism x 
32 √18 (56ρ8−105ρ6+60ρ4−10ρ2) sin(2θ) (5,2) Quaternary Astigmatism y 



33 √20 (126ρ9−280ρ7+210ρ5−60ρ3+5ρ) cos(θ) (5,1) Quaternary Coma x 
34 √20 (126ρ9−280ρ7+210ρ5−60ρ3+5ρ) sin(θ) (5,1) Quaternary Coma y 
35 √11 (252ρ10−630ρ8+560ρ6−210ρ4+30ρ2−1) (5,0) Quaternary Spherical 

 

Zernike coefficients αi are directly related to the rms wavefront error, which in turn is related to image quality via the 
Strehl ratio.13  Zernike polynomials are orthogonal over the unit circle (exit pupil with radius one), the significance of 
which is reflected in the polynomial coefficients.  Since the wavefront variance is equal to the sum of the Zernike 
coefficients squared, each coefficient can be independently minimized to reduce the total wavefront rms value and 
theoretically should not affect coefficients for the other terms in the expansion. 

 

 
  Fig. 1.  Zernike polynomials up to the 9th order. Piston is excluded. 

 

3. METHOD 

The aberration effects on the image can be estimated by studying the image intensity changes coupled with defocus.  
We use a phase wheel target, described in a previous report1, which allows a regular sampling across the pupil.  The 
target contains transparent mask features phase-shifted by 180 degrees relative to a background.  It is a complex-valued 
object function that has an infinite support in the frequency domain and therefore can sample the pupil continuously.  
The method does not impose a restriction on the target choice so long as the pupil is being adequately sampled.  Ideally, 
the method must work with a target that has both a high sensitivity to aberrations and a low cross-correlation between 
different fit parameters. 

The procedure involves precisely modeling the propagation of light from target to the detector in an image-forming 
system, and subsequently comparing the simulated images to the measured image.  In microlithography, the image 
measurements may be derived either from the image intensity or from the image in photoresist.  Once the initial set of 
images is compared, an iterative algorithm is employed to arrive at an estimate of aberration coefficients that give the 
best match between the model and the measured image data. 

The aberration extraction is approached as an optimization14 problem. The algorithm estimates the aberration 
coefficients by finding the minimum norm solution to a nonlinear least squares problem to quantify the difference 
between experimental and model-generated data.  The wavefront is parameterized into the orthogonal basis functions 
(Zernike polynomials), coefficients for which are accepted into our parametric model as the arguments.  On the input 
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we have { f1(z), …, fM(z) }, which is a set of input image functions that depend on a set of n variables obtained at M 
different focal planes.  Let f̂  be an estimate of f, derived from the model which utilizes the first n Zernike functions.  To 
find a set of ‘optimal’ parameters ẑ  that reconstructs the image of the target, a fitting procedure is set up as follows: 
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In terms of the given basis, each z œ Rn can be represented by the n-tuple of aberration coefficients {α1, …, αn}.  An 
error metric is computed from the residual differences between modeled and recorded images, and the wavefront 
estimate is refined iteratively to drive the metric to a desired minimum.  Parameter estimation is an n-dimensional 
problem requiring a nonlinear optimization algorithm to find a numeric solution.  We make use of large scale gradient-
based methods of optimization such as Gauss-Newton algorithm. A simplex search method that minimizes the 
difference without using the derivatives, while more computationally expensive, also performs well for this problem. 

The fitting procedure is implemented in Matlab15 (to perform image processing and calculations) and is interfaced with 
the Prolith16 lithography simulator. 

The method has potential to be further refined.  Besides the Zernike coefficients, the important degrees of freedom of 
the imaging model include the illumination coherence factor, numerical aperture, focus offset, target geometry, etc.  All 
but the Zernikes are usually known for the system or, in practice, can be determined from independent measurements.  
Additional flexibility can be gained in the model by including the variation in any of these – a partial coherence, for 
instance.  This would then take into account an uncertainty in the partial coherence measurement. 

The next example will explore a best-fit numerical solution for 35 parameters simultaneously. 

4. EXAMPLE 

To test the accuracy of the method, we perform a simulated experiment evaluating a 193nm 0.9NA aberrated lens with 
Strehl ratio of 0.975, chosen to closely match an actual system.  The 2-D aerial image intensity that has been degraded 
by the known amount of aberration is input to the model.  Synthetic aerial images are taken from a single target, for 
single illumination condition (σ=0.3), at three planes of focus. 

 

 

As is shown in Figure 2, one of the input 
images is the in-focus image while the others 
are at 0.15 microns to either side of the best 
focus.  Defocusing an image perturbs it with an 
additional known phase error.  The relative 
quadratic phase difference that results is 
encoded within the each image. As the fitting 
procedure is performed to determine the 
coefficients, the response at three focal planes is 
minimized jointly. 

In this example we derive the first 35 Zernike 
terms up through the 9th order, excluding the 
piston term.  The coefficients for tilts x and y 
(Z1 and Z2) are kept zero.  The results obtained 
from the fit are presented in next section. 
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Fig. 2.  Phase wheel target (aerial image) perturbation through focus 



5. RESULTS AND DISCUSSION 

The simulated results demonstrate that the method yields a superior quality of the wavefront estimate for zero 
measurement noise.  This is illustrated in Figure 3 as a height map of the wavefront aberration over the pupil.  The 
residual rms wavefront error is very low at 10-4 λ (or 0.02 nm).  The agreement between the best-fit and the input 
aberration functions is further illustrated in Figures 4 and 5. 

 

 

 

 

 

 
Fig. 3.  Simulated performance:   pupil  wavefront  maps  of  the  actual  wavefront (top),   the  generated  solution (bottom left),  and  
the residual surface (bottom right). 

 

The individual Zernike coefficients obtained from the fit are given in Figure 4.  The fit was performed with 35 
coefficients.  The coefficients are expressed in multiples of the wavelength used (λ=193 nm).  The estimates of the 
Zernike coefficients are seen to coincide closely with the real values, confirming that the model performs a unique 
reconstruction of the parameters. 
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Fig. 4.  Calculated vs. actual aberration coefficient values 

 

Next, Figure 5 shows how the total rms error is distributed among the individual terms.  The parameter differences look 
rather uniform, and on average are slightly higher for the spherical terms.  The largest error observed between the true 
and the retrieved Zernike coefficients is less than 0.0001 waves.  Hence, the theoretically achievable model accuracy is 
on the order of 0.01%. 

 

 
Fig. 5.  Difference real vs. fitted wavefront coefficient values 



Figure 6 shows the representative standard errors on the individual parameters from the fit.  In general, the standard 
error tends to increase for the higher order terms but all are considered to be very small.  As the number of terms in the 
expansion becomes large we will expect a limitation in the precision of the estimate, however the impact is only 
secondary.  While reconstructing a larger number of terms increases noise, the system that is allowed to model higher 
order terms provides more degrees of freedom for a better fit to a real wavefront.  So in practice, the estimates will still 
be tied to a total number of coefficients used in a fit. 

 

 
Fig. 6.  Standard error on fitted aberration coefficients 

 

The method’s convergence is good and its stability gives some reassurance that the pupil has been adequately sampled 
by the target’s spectra.  This analysis is extendable to resist imaging as well. The use of multiple measurements 
(additional images of the same object) in addition to a different defocus is expected to further increase the robustness of 
model if needed and help ensure that the algorithm converges reliably. 

If a robust method of least squares is used to obtain the coefficients, the quality of the fit will depend only on the 
number of terms used.  To model the wavefront aberration as closely as possible, the Zernike fit to a wavefront should 
contain a sufficient number of terms, so long as the error of the fit associated with each coefficient does not become as 
significant as the coefficient itself.  Hence, in practice, depending on the noise level there will be an optimal number of 
terms providing a minimum fit error.  However, the parameter-fits still have to be used with caution as the performance 
will depend on how well the assumed expansion matches the reality. Due to some redundancy2 in the Zernike 
decomposition, some aliasing would presumably be found in that the value of each coefficient could change when the 
expansion is truncated.  In fact, the main effect is seen when the sum is truncated early, i.e. when higher order 
aberrations are present in the pupil but are not modeled in the fit.  We look at this issue in the next example. 

A simulated analysis is done next where the polynomial order of the original wavefront is 35, but only a limited number 
of coefficients are used in the extraction (the first 24).  Hereby, there is a finite content in the high order terms Z25 – Z35 
that is not extracted.  The simulation reveals that the presence of high order aberrations causes systematic errors in the 
estimation of low order coefficients.  Figure 7 gives some insight into the possible magnitude of such errors.  The chart 
displays the coefficient values for several subgroups. Within each subgroup there are terms of the same azimuthal 
frequency m of increasing radial degree n (just as they are along the columns in Figure 1).  The similarity between the 
Zernike  polynomials  along  the columns  implies  the stability  of  the coefficient values.   In this  specific example, the  



 

Fig. 7.  Here we check the validity of truncating the fit early, which could lead to interaction between orders.  The wavefront solution 
is given when expansion is truncated at index #24.  Higher order coefficients (25–35) while present were excluded from the fit. 
Charted by subgroup (about the individual columns in Fig. 1), m=0 represents spherical aberration terms (3, 8, 5, and 24), m=1 
comatic x terms (6, 13, 22, and 33), m=2 astigmatic, and so on.  The effect of high orders aberration is noticeable at low orders.  The 
solution is generally unsatisfactory and higher order coefficients must be included in the fit. 



impact of higher order terms on the estimation of the first 24 Zernikes is as follows. It can be seen form the 
corresponding graph for spherical aberrations that Z35 is shifted into the corresponding lower terms 3, 8, 15, and 24.  
With only 24 terms in the expansion, adding the fifth spherical component (9th order polynomial) to the wavefront 
changes the lower order spherical coefficient estimates by 15 to 40% on average.  The coefficient for 7th order y-coma 
(Z23) is also significantly overestimated, by about 50% in magnitude according to the simulation.  The next lower order 
term Z14, representing 5th order y-coma aberration, is overestimated by about 30%.  Here the 3rd order y-coma (Z7) 
estimate is contaminated by 15%.  The effect on the higher order estimates is stronger, diminishing toward the 3rd 
(lower) order.  This phenomenon affects each group more or less equally as well as raises the total rms wavefront error 
by 1.6 nm.  Depending on the amount of high order aberration present, the error in extracted coefficients is expected to 
shoot to a 100% (as in the m=3 subgroup).  This behavior is the form of aliasing, which in this context is a 
contamination of low order aberration estimates by the presence of higher order errors that occurs in the truncated fits.  
When the expansion is truncated early the fit accuracy will suffer.  We know that we can minimize this error by 
extracting a complete set of coefficients (35 coefficients).  Therefore, in cases where the high order aberrations exist (as 
they do in fact) and the accurate knowledge of low order terms is needed, the former must also be included in the fit. 

On the other hand, when the aberration content of the pupil is represented completely by some finite number of 
polynomials, the higher order terms do not affect the lower terms. As the number of the fitted coefficients increases, the 
value of each coefficient will essentially be independent of the other terms in the expansion.  This means that higher 
order components should be included whenever possible, and may be measurable when included in the fit (unless the 
effect of variations is below the method’s ability to sense these).  Hereby, the accuracy of the model will depend on the 
number of coefficients in the fit, and there may be a trade-off between accuracy and noise.  Selecting an appropriate 
number of fit parameters is critical to final accuracy.  There is always a possibility that real aberrations of very high 
order could affect the fit.  There must be a large enough number of coefficients in the model to distinguish the 
magnitude of terms in lenses with significant amounts of higher order aberrations. 

6. CONCLUSION 

A technique for automated aberration extraction has been developed for lithography applications. The fitting algorithm 
includes the nonlinear optimization of the fit parameters. Simulation results using synthetic images show that Zernike 
aberration coefficients can be recovered from intensity information, given appropriate target choice.  Nonlinear 
optimization proved to be useful for fitting a variety of targets.  Phase wheel targets provide high sensitivity and yield 
good results.  The example was given for the method, characterizing a typical lens.  The results indicate that it is 
feasible to use the phase wheel aberration monitor for characterizing the high order Zernike space (35 terms).  The 
model has been validated to provide a high sensitivity (wave errors at λ193/100) as well as high accuracy. This 
performance compares favorably with other methods.  In the noiseless case, the fitting error as predicted is less than 
0.01%, which is below the typical noise level of any current system.  The effects of image measurement noise will be 
quantified in follow-on studies.  Further work will also address the tests with various amounts of random errors.  The 
method is extendable to incorporate resist imaging into the model, and is capable of using SEM images of actual resist 
for fitting the aberrations. 
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