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ABSTRACT 
An approach to measurement of resist CD response to image modulation and dose is presented.  An empirical model 
with just three terms is used to describe this response, allowing for direct calculation of photoresist modulation curves.  
A thresholded latent image response model has been tested to describe CD response for both 90 nm and 45 nm 
geometry.  An assumption of a linear optical image to photoresist latent image correlation is shown as adequate for the 
90 nm case, while the 45 nm case demonstrates significant non-linear behavior.  This failure indicates the inadequacy of 
a “resist blur” as a complete descriptive function and uncovers the need for an additional spread function in OPE-style 
resist models. 
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1. INTRODUCTION 
Photoresist modulation curves are a quantitative way to characterize photoresist performance, without any assumptions 
on the nature of photoresist.1  The only requirement for such characterization is experimental measurement of CD 
response to image modulation m=(Imax-Imin)/(Imax+Imin) of the delivered image (also referred to as image contrast), across 
a wide variety of resolutions. The key feature for successful implementation of this approach is the ability to create 
optical image in resist with modulation ranging from 0 to 1.  The response collected on such a dataset can determine the 
“brick wall” limit for resist performance, as well as any “softer” limits, based on a desired level of exposure latitude.   

It is the goal of this work to perform such experimental measurement, analyze the model required to fit the data, and test 
several common assumptions about photoresist characterization.  A key model commonly used for resist CD analysis is 
that of the thresholded latent image2: 
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Here, E is the exposure dose, Es is the dose-to-size, CD is the resist linesize, p is the image pitch, and mR is the 
modulation of the latent image.  Solving this equation for CD, it is readily obtained: 
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Regression models based on the Taylor expansion of Equation (2) have been shown to yield better descriptions of 
physical data with fewer model terms.3  Another model that is commonly used is that of photoresist linearity.2  The 
relationship between the optical image and the latent image in resist is typically assumed to be a linear and shift 
invariant transformation, allowing the use of a simple proportionality constant: 
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Where α(p) is the MTF of the photoresist at resolution corresponding to the pitch p.  This model is the key assumption 
for all photoresist modeling approaches that utilize a “resist blur” diffusion kernel.  Therefore we feel this assumption 
should be tested as often as possible, and it will be tested in this work, since all the data is available for it. 

2. EXPERIMENTAL 
To simplify description of experimental data, the simple model of Equation (2) was expanded into its Taylor series.  The 
latent image modulation was replaced by optical image modulation m, and additional terms were added for generality.  
The final model ready for regression is shown in Equation (4): 
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Here, ε is a random variable, necessary to describe the experimental error and the deviation from the true model.   

The only approach capable of forming optical images with modulation levels reaching 1.0 available to date is 
interferometry.  It has been implemented for printing on wafers,4 and used in conjunction with immersion,5 as well with 
water immersion and using ArF as the source.6  This makes interferometric imaging an ideal solution for photoresist 
characterization, if the photoresist is intended for use in ArF immersion lithography. 

The 90 nm interference imaging was realized with an Amphibian XIS-SW7 immersion/dry ministepper, configured with 
an NA=0.54 imaging prism, designed to create patterns of 90 nm half-pitch on the wafer.  This tool was able to process 
200 mm wafers in Modulation-Exposure array mode. The immersion configuration was used with a fluid gap of 
0.3 mm.  No attempt was made to calibrate the dose level based on the imaging performance, and the dose calibration 
factor of 200 cm2 was used.  The photoresist coating and development was performed using an automated track, while 
the PEB was done using a Brewer Science CEE 1000 hotplate in proximity baking mode. 

Rohm and Haas XP 4946 photoresist was used with a thickness of 200 nm after the 60 s/90 °C softbake.  The resist was 
coated atop the AR40 BARC material, which was 80 nm thick.  The baking conditions for the BARC material were 60 
seconds at 215 °C.  Following the exposures the wafers were baked for 60 seconds at 95 °C, and then developed for 
60 seconds in a 0.26 normality TMAH solution.   

The photoresist used in the 45 nm study was JSR 1941J, with a thickness of 90 nm.  The softbake and the post-exposure 
bake conditions were 60 seconds at 110 °C.  The dose calibration was performed using this photoresist, and the dose 
calibration factor was set to 28 cm2, so that the dose-to-size was approximately 20 mJ/cm2.  The Brewer Science 
ARC 29A at 41 nm thickness, processed for 90 seconds at 200 °C served as the reflection suppression layer.  The JSR 
TCX-014 material with a thickness of 30 nm was used as a top barrier.  The interference prism with the NA=1.05 and a 
water gap thickness of 0.3 mm provided the main imaging configuration for the microstepper. 

The processed wafer inspection was once again done using a Hitachi S-9300 SEM.  It should be noted that 45 nm 
features are beyond the intended resolution limit of this tool, which likely introduced larger relative amount of noise 
into the experimental data when compared to that for the 90 nm study. 

3. RESULTS 
The linewidth was measured using the SEM, and all of the subsequent results are reporting the measured CD values. 

3.1. Processing the resist response for Modulation curve construction 
The Modulation-Exposure array was analyzed, and the resulting CD data points were fitted with a regression model 
corresponding to Equation (4).  The fits are shown in Figure 1 and Figure 2, and the summary of fitted model terms is 
give in Table 1 and Table 2.  The fitted CD(m,E) function can be readily inverted to calculate the m(EL) response at 
each resolution. 
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Figure 1: Experimental raw (dots) and fitted (lines) CD vs. modulation and dose in the 90 nm test case.  The fit model has an R2
adj of 

0.96 and an RMS error of 3.0 nm across the whole data range, while only using 3 regression terms (see Equation (4)). 

Term Estimate Std. Error Significance 
Intercept -37.2 3.2 <.0001 
1/E 168.0 4.3 <.0001 
1/m -6.86 0.86 <.0001 
(1/E-0.73281)·(1/m-1.38352) 146.7 13 <.0001 

Table 1: Summary of the estimates of the model parameters used to analyze the Modulation-Exposure matrix for the 90 nm 
interferometric imaging.  A total of 72 data points covering a wide range of dose and modulation values were described using this 
model.  The average standard error of prediction was 0.7 nm within the parameter space. 
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Figure 2: Experimental raw (dots) and fitted (lines) CD vs. modulation and dose for the 45 nm case.  The fit model has an R2
adj of 

0.82 and an RMS error of 1.9 nm across whole range, while using only 3 regression terms.  



 

 

Term Estimate Std. Error Significance 
Intercept -24.6 6.3 0.0005 
1/E 1370 154 <.0001 
1/m -2.7 2.1 0.21 
(1/m-1.24157)·(1/E-0.05064) 2161 747 0.0073 

Table 2: Summary of the estimates of the fit parameters used to analyze the Modulation-Exposure matrix for the 45 nm 
interferometric imaging.  A total of 32 data points covering a wide range of dose and modulation values were described using this 
model. 

3.2. Testing the resist linearity assumption 
Beyond calculating the m(EL) modulation curve response, the experimental data was used to test the validity of the 
thresholded latent image model (Equation (2)) as well as of the photoresist linearity assumption (Equation (3)). 

The threshold model test consisted of using Equation (2) to fit the individual CD vs. E curves at different modulation 
levels.  The quality of the fit compared to other common types of fits was used to judge the applicability of the model.  
An example of this type of analysis is given in Figure 3 and Figure 4.  All of the modulation series in this experiment 
passed this test, with the threshold model often obtaining the highest R2 value of all the common fitting models.  As a 
result of this analysis, the value of latent image modulation (mR) was estimated for each level of the optical image 
modulation (m). 
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Figure 3: Example of latent image modulation measurement for the 90 nm case, the value was extracted by using the direct fit using 
Equation (2).  The input optical image modulation was 1.0, and the extracted latent image modulation was 0.65.  

Further testing included analysis of the mR vs. m curves.  For this test the value of the latent image modulation was 
plotted vs. the optical image modulation, fitting a linear relationship.  The y-intercept term of the fit was compared to 
zero, within the standard error of the fitted value.  The result for the 90 nm case is shown in Figure 5, with the resulting 
value of the slope of 0.66 ± 0.06, and the intercept of -0.04 ± 0.04. It was thus determined that this case satisfied the 
linearity assumption.  
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Figure 4: Example of latent image modulation measurement for the 45 nm case, the value was extracted by using the direct ArcCos 
fit.  The input optical image modulation was 1.0, and the extracted latent image modulation was 0.61. 
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Figure 5: Linearity test for the 90 nm test case.  The error bars represent confidence intervals obtained after fitting mR.  The latent 
image modulation appears to be proportional to the optical image modulation. 

In the 45 nm case (Figure 6), the value of the slope was calculated as 1.09 ± 0.14, and the value of the intercept was 
-0.49 ± 0.12.  The error in this estimate represents only the uncertainty in fitting the line to the mR points.  The fact that 
the intercept is different from zero represents a failure of the linearity assumption for the photoresist.  A definitive “hard 
stop” resolution limit for this resist can be identified, if extrapolation of the data is allowed. This photoresist would have 
no image formation as long as the optical image modulation is lower than 0.45.  This represents the “brick wall” limit at 
this resolution. 
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Figure 6: Linearity test for the 45 nm test case.  The photoresist latent image modulation is plotted vs. the optical image modulation.  
The latent image modulation does not appear to be proportional to that of the optical image.  A resist with performance matching the 
extrapolated line has a “brick wall” limit, if the image modulation is less than 0.45, no useful modulation of the latent image is 
produced. 

4. CONCLUSIONS 
An approach for modeling the CD response to optical image modulation and dose has been presented.  Experimental 
data sets for 90 nm and 45 nm nodes were collected using an immersion interferometric ministepper.  A simple three-
term model was identified, fitting both test cases with high R2. These models are ready for use in calculating the 
Photoresist Modulation Curves, when collected for the same resist at varying resolutions.   

Additional assumption testing was performed on the collected datasets.  The thresholded latent image development 
model appeared to be applicable, while the resist linearity test passed for the 90 nm case, and failed for the 45 nm case.  
The implications of the photoresist linearity failure can be far-reaching, including a fundamental inability of the “resist 
blur” style approach to accurately describe resist response for 45 nm geometries. 
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