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ABSTRACT 
 In a photolithographic system, the mask patterns are imaged through a set of lenses on a resist-coated 

wafer. The image of mask patterns physically can be viewed as the interference of the plane waves of the diffraction 
spectrum captured by the lens set incident on the wafer plane at a spectrum of angles. Two-beam interference fringe 
is the simplest format of the image. Consequently, two-beam interferometric lithography is often employed for 
photolithographic researches.  For two-beam interferometric lithography, beam pointing instability of the 
illumination source can induce fringe displacement, which results in a loss of fringe contrast if it happens during the 
exposure. Since some extent of beam pointing instability is not avoidable, it is necessary to investigate its effects on 
the contrast of the interference fringe. In this paper, the effects of beam pointing instability associated with a two-
beam interferometric lithography setup are analyzed. Using geometrical ray tracing technique and basic interference 
theory, the relationship between the beam tilt angle and interference fringe displacement is established. For a beam 
pointing instability with random distribution, the resulted fringe contrast is directly proportional to the Fourier 

transform of the pointing distribution evaluated at
π2
1

. The effect of a pointing instability with normal distribution 

on interference contrast is numerically investigated. 
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1. INTRODUCTION 
In a conventional lithographic imaging system, the patterns on the mask are projected through a set of 

lenses on a wafer coated with photoresist where the image of the patterns is recorded.1 Interference lithography 
produces periodic patterns in a photoresist film by the interfering of two coherent laser beams.2-3 For a few special 
cases, diffraction-limited projection imaging is analogous to interference imaging. The first case is the projection 
imaging of a phase shifting grating mask (1:1 duty ration, alternating 180º phase shift, 100% transmission) with 
coherent illumination. The grating’s 0th diffraction order is zero. If the pitch of the grating is such that only the ±1st 
diffraction orders are captured in the entrance pupil, the resulting image is simply the interference fringes of two 
plane waves with oblique angle θ (half of the angle subtended by the lens at the image plane). The second case is the 
projection imaging of a 1:1 binary grating mask with coherent illumination. If the pitch of the grating is such that 
only the 0th and ±1st diffraction orders are captured in the entrance pupil, the resulting image is the interference 
fringes of three plane waves, two beams with oblique angle θ, one normal to the image plane. The third case is the 
projection imaging of a 1:1 binary grating mask with off-axis coherent illumination. If the pitch of the grating is 



such that only the 0th and one of the ±1st diffraction orders are captured in the entrance pupil, the resulting image is 
the interference fringes of two plane waves of different amplitudes with oblique angle θ (since the amplitude of the 
0th order is different from that of the ±1st orders). For the above cases with partial coherence illumination, the 
resulting images still can be considered as interference fringes but with weaker ±1st diffraction orders since only 
part of the ±1st orders is captured in the entrance pupil. In a word, imaging of the above grating objects from an 
optical projection system can be reduced to the problems of plane wave interference. 

The resemblance of projection imaging to interference imaging in the cases analyzed in the preceding 
paragraph has stimulated studies of optical projection systems using an interferometric setup.4-8 Although those are 
special cases, they represent a system’s resolution limits, which mostly define the system’s capability. An advantage 
of using an interferometric setup is that the costly lenses are not needed. At the same time, a single interferometric 
setup possesses the flexibility of emulating lenses with various numerical apertures. The polarization of beams can 
be conveniently manipulated, allowing study of polarization effects. An extra flexibility is that the relative amplitude 
of the beams can be easily controlled.  

In a research or a fabrication environment, there are many factors which can contribute to laser beam 
direction fluctuation, such as laser intrinsic pointing instability, mechanical resonant vibration, environmental 
vibration, etc.  All those factors can be lumped as one parameter: beam pointing instability. A typical laser with a 
beam pointing stability of 20 µrad 9 could cause a beam shift of 2µm after propagating a distance of 10 cm. 
Considering that interferometric lithography together with immersion techniques is capable of printing sub-30 nm 
line/space patterns, a beam shift of 2µm is an immense number. Therefore, it is necessary to analyze the effects of 
beam pointing instability on the contrast of the interferometric fringe used for lithography. In this paper, a simple 
geometrical ray tracing technique and the basic interference theory are applied to relate beam tilt angle with 
interference fringe displacement, which induces fringe contrast loss. The relationship will provide a good 
understanding of how the interference fringe is affected beam pointing instability.  

 
2. THEORETICAL MODEL 

A schematic of two-beam interferometric lithography system is shown in Figure 1. The laser beam, after 
expansion, polarization and spatial filtering, is split by a phase-shifting grating into a series of discrete diffraction 
orders. With the residual 0th order and other higher orders being blocked, the ±1st orders are directed at oblique 
angles toward a wafer coated with resist. Tilting of the beam during the exposure could blur the interference fringe. 
However, it should be noted that not every mode of beam direction tilt necessarily blurs interference fringe. Only 
beam tilt that causes fringe displacement (i.e. the change of the phase of the sinusoidal wave) will cause blurring, as 
is illustrated in Figure 2. In this experimental setup, a beam tilt in the grating perpendicular direction could cause 
fringe displacement. In this section, the phase shift of the interferometric fringe will be analyzed as a function of 
beam tilt angle, as well as a function of the setup configuration parameters. 
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Figure 1. Schematic of interferometric lithography setup.  
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Figure 2. Interference fringe from tilted beam is displaced relative to that from normal beam, causing fringe blurring.  

 
A schematic illustrating laser beam tilt in the experimental setup is shown in Figure 3. A normal incident 

beam is split by the phase grating into various diffraction orders, the ±1st orders of which are redirected to 
interference at the wafer plane. The diffraction angle of the first orders is defined by, 

p
sin λ

=α   [1] 

 
To achieve an interference angle θ at the wafer plane, a mirror tilt angle of β is required, 

2
α−θ

=β  [2] 

D is defined as the normal distance to the setup central axis from the point where the center of the beam hits the 
mirror. For a given grating pitch p and a required interference angle θ, the mirror separation (2D) describes the size 
of the setup. 
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Figure 3. A schematic showing laser beam tilt. The solid beam is normal and the dashed beam is tilted by an angle of δ. 
The parameters used in the calculation are labeled in the figure. 
 
Assume that the beam incident on the grating is tilted by an angle δ relative to normal due to beam pointing 

instability, then the diffraction angles of the first orders can be expressed by grating equation as, 

δ+
λ

=α sin
p

'sin   [3] 

δ−
λ

=α sin
p

''sin   [4] 

where '  and  are the ±1α ''α st diffraction orders respectively. For the +1st order, now the center of the beam hits the 

mirror at a different point, from which the normal distance  to the central axis,  is related to D in the following 
equation, 

'D

)cot(D)D)cot((D')'αcot(D' α=β−+   [5] 

Rearrangement of the above equation gives. 
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The beam travel distance , from the grating, reflected by the mirror to the wafer plane can be derived as, L'
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where  is the incident angle to wafer normal, 'θ β+α=θ 2'' . The titled beam insects with the wafer plane at a 

location which is from the central axis, x'
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Similarly, the following relationships can be derived for -1st order beam: 
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where . The double prime symbols denote the correspondent parameters for the -1β+α=θ 2'''' st order beam. 

 With all those, the optical path distance between the ±1st orders on the wafer plane at the central axis can be 
expressed as, 

[ ]
[ )''sin(''x''L)'sin('x'Ln
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where n is the refractive index of the media. The corresponding phase difference is, 
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OPD2
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λ
π

=

λ
π

=φ
  [14] 

Equation [14] is the basic equation that relate beam tilt angle with the phase shift of the resultant interference fringe. 
From this equation, the corresponding displacement of the fringe can be found, and subsequently the contrast loss. 
In section 3, the phase shift is analyzed as a function of various configuration parameters. In section 4, the effect of 
beam tilt with a statistical distribution is analyzed. 
 
3. ANALYSIS OF BEAM TILT USING THE MODEL 

The phase shift due to beam tilt versus beam tilt angle is plotted in Figure 4. A grating pitch 

of , setup size of , interference angle of θ = 45°, and source wavelength of nm 600p = mc 1D = nm 193 =λ  

are used in the calculation. It is shown that a beam tilt of 1° will cause a phase shift of π, which is the worst case 
causing imaging blurring. As the tilt angle goes higher, the phase shift oscillates between 0 and 2π, with an 

increasing oscillating frequency. Let’s set up an arbitrary criterion that 0.01π (which approximately causes 
100
λ

 

fringe displacement) is the maximum phase shift that will not cause any noticeable image contrast loss. For the case 
shown in this plot, the maximum tolerable beam tilt angle is 0.15°. 
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Figure 4. Fringe phase shift  plotted versus laser beam tilt angle.  Grating pitch p = 600 nm, setup size D = 10 cm, 

wavelength λ = 193 nm, sinθ = 0.707. 
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Figure 5. Fringe phase shiftφ  is plotted versus laser beam tilt angle for setup size D= 1 cm, 5 cm, 10 cm respectively.  

Grating pitch p = 600 nm, wavelength λ = 193 nm, sinθ = 0.707. 

Setup size D is an important factor determining the phase shiftφ . In Figure 5, the phase shift due to beam 

tilt is plotted versus tilt angle at various values of D. It shows that the phase shift due to beam tilt increases 
as the magnitude of D increases. As a matter of fact, it is a direct proportion relationship, which is indicated 
in the derivation of Equation [14]. 
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Figure 6. Fringe phase shift  is plotted versus laser beam tilt angle δ for sinθ=0.500, sinθ = 0.707 and sinθ = 0866 

respectively. Grating pitch p = 600 nm, wavelength λ = 193 nm. 

φ

 
In Figure 6, the phase shift due to beam tilt is plotted versus tilt angle at various values of interference 

angle θ. It shows that the phase shift due to beam tilt is relatively non-sensitive to interference angle θ, especially at 
low tilt angles. This is an important property of the setup. If a certain degree of beam tilt (for example, due to some 
resonant vibration) does not wash out the fringe patterns at low θ values (i.e., low NA, loose pitches), it is not going 
to wash out the fringe patterns at high θ values either (i.e., low NA, tight pitches). This property makes it much 
easier to lay out the vibrations criteria for the interferometric system which is intended to work at various NA 
values. 

In addition to the interference fringe shift (phase shift), laser pointing tilt also could result in change in the 
pitch of the fringe since the incident angles of the two beams on the wafer plane is a function of the laser tilt angle δ. 
The change in incident angles in turn induces interference fringe pitch change. As discussed in the proceeding, the 

incident of angle of the +1st order is  and the incident angle of the -1'θ st order is ''θ ,  then the electrical field at the 
wafer plane can be expressed as, 

                            e
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where E1 and E2 are the electrical fields of +1st order and -1st order respectively, k is the propagation vector, and x is 
the coordinate on the wafer. Following the same method described in reference [10], the total field at the wafer plane 
in the case of TE polarization can be expressed as, 
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The intensity can be derived as, 
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Therefore, the corresponding pitch is, 
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2ptilt θ+θ

λ
=

θ+θ
π
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For a laser pointing tilt angle δ,  tends to be larger than 'θ θ , but ''θ  tends to be smaller than θ . For a small tilt 

angle δ, intuitively, we may think that θ≈θ+θ sin2''sin'sin ,  hence a very small pitch change is expected. To 
describe the phenomenon quantitatively, let’s define a length L over which the pitch number difference between the 
tilted case and non-tilted case is 1,. L can be expressed as, 

)''sin'sinsin2(n
p
1

p
1

1L

tilt

θ−θ−θ
λ

=
−

=   [19] 

As illustrated in Figure 7, the fringe pattern from tilted beam is out of phase with that from the normal beam at the 
two ends of length L, where the resulted fringe contrast is the worst. If the laser energy is equally distributed 
between the normal direction and δ-tilt direction, the fringe contrast is zero at those locations. In reality, the contrast 
will depend on the laser pointing direction statistics. If the length of the desired image area is much smaller than L, 
the contrast loss due to laser pointing instability can be ignored. Therefore, L is characteristic of the useful image 
size that could be obtained in the case of laser pointing instability. Here, it is termed as Tilt Coherence Length. 
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Figure 7. Illustration for interference fringe contrast loss due to fringe pitch change from tilted beam. The solid 
sinusoidal curve is from normal beam interference and the dashed sinusoidal curve is from tilted beam. Over a length of 
L, the solid curve has one more number of pitches than that of the dashed curve. At both ends of the length L, the 
contrast is the worst. 
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Figure 8. Tilt coherence length is plotted versus laser beam tilt angle. Grating pitch p = 600 nm, setup size 
D = 1 cm, wavelength λ = 193 nm.  sinθ =0.500 (solid curve); sinθ = 0.707 (dashed curve); sinθ = 0.866 
(dotted curve). 
 
The tilt coherence length versus laser beam tilt angle is plotted in Figure 8. A grating pitch 

of , setup size of and source wavelength of nm 600p = mc 1D = nm 193 =λ  are used in the calculation. The 

plots show that the tilt coherence length decreases as the interference angle θ is increased to higher values. It 
indicates that beam tilt is more sensitive at higher θ values, which lies in our scope of interest. The degree of beam 
tilt which can be tolerated in our interferometric systems can be derived from the plots if it is the only factor that 
contributes to fringe contrast loss. In the context that the effective beam size in our setup is around 2~3 mm, a tilt 
coherence of 200 mm would yield negligible contrast loss. The corresponding tilt angle from the plot is 0.05° in the 
case of θ = 60° (dotted curve). This would allow us to establish minimum requirements for factors which contribute 
to beam tilt, such as laser pointing stability, mechanical setup vibration, environmental vibration, etc. 

 
 
4. BEAM POINTING INSTABILITY WITH GAUSSIAN DISTRIBUTION 
 The preceding analysis has been focused on one certain laser beam tilt angle. In practice, the laser beam tilt 

angle has a normal distribution, P(δ), where P is the normal distribution function. The previous has shown that φ is 

directly related to δ, so the distribution of φ  can be expressed as ( ))(P φδ . Equation [5-17] states that the 

interference fringe intensity is a function of location x, and tilt angle σ, I(x,φ ). The resultant interference fringe is 

an average over the valuesφ , that is, 
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Substitution of Equation [5-17] gives, 
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Assume that σ is very small, then 

θ=θ+θ sinkx2''sinkx'sinkx   [22] 
Equation [5-21] can be rewritten as, 
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Since  is an even function, the above integral is a convolution, which can be simplified as, ( )(P φδ
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where . Evaluation of the above convolution yields, θ= sinkx2u
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π
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2
1)u(P is the Fourier transform of ( ))u(P δ  evaluated at 

π2
1

.  The contrast of the fringe can be 

expressed as, 
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If the two beams are equal in intensity, the contrast can be reduced as, 

( ){ }
π

δℑ=
2
1)u(PContrast   [27] 

If the standard deviation σ of beam direction fluctuation is known, that is, P(δ) is known, it allows us to 
numerically evaluate the fringe contrast in the absence of laser beam direction fluctuation. An example is shown in 
Figure 9. 

In this figure, the fringe contrast is plotted versus the standard deviation σ of beam direction fluctuation. 
Configuration size D=0.01m, interference angle θ=45°, wavelength λ=193nm and grating pitch=600nm are used in 
the calculation. The simulation results show that the contrast drops rapidly at σ=0.5°.  The excimer laser used for 
lithography has an intrinsic σ of about 20µ radians,9 the effect of which on interference fringe contrast can be 
ignored, as shown in Figure 9. In addition to intrinsic laser pointing instability, other factors such mechanical 
resonant vibration, environmental vibration, etc. might bring the standard deviation σ of the beam direction 
fluctuation to a higher value. Under those circumstances, the contrast loss of the interference fringe is well described 
by the curve in Figure 9. 
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Figure 9. Interference fringe contrast is plotted versus the standard deviation σ of beam direction fluctuation. 
D=0.01m, sinθ=0.707, λ=193nm, grating pitch=600nm, TE polarization. 

 
 

5. CONCLUSION 
Using geometrical ray tracing technique and basic interference theory, the effects of beam pointing 

instability on the contrast of interference fringe were analyzed for a two-beam interferometric lithography setup 
described in this paper. The established relationship between beam tilt angle and interference fringe displacement 
allows the evaluation of the fringe contrast if the beam pointing direction is not stable during the exposure. The 
analysis shows that a setup configuration with smaller size is more tolerant with beam pointing instability. It also 
shows that the system is more tolerant with beam pointing instability at higher interference angles. For a beam 
pointing instability with random distribution, it has been shown that, the resulted fringe contrast is directly 

proportional to the Fourier transform of the beam pointing direction distribution evaluated at
π2
1

. A numerical 

simulation example was given for a beam pointing direction with normal distribution. The example shows that a 
beam pointing direction of Gaussian distribution with standard deviation less than 0.25 degree does not noticeably 
affect the contrast of the resulted interference fringe. The analysis introduced in this paper may be applied to 
evaluate any factors contributing to beam direction fluctuation, such as intrinsic laser pointing instability, mechanical 
resonant vibration, environmental vibration, etc. 
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