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ABSTRACT 

 
Immersion interferometric lithography has been applied successfully to semiconductor device applications, but its 
potential is not limited to this application only.  This paper explores this imaging technology for the production of three-
dimensional nano-structures using a 193 nm excimer laser and immersion Talbot interferometric lithographic tool. The 
fabrication of 3-D photonic crystals for the UV spectrum is still considered to be a challenge. A systematic analysis of 
immersion lithography for 3-D photonic crystal fabrication will be provided in this paper. Significant progress has been 
made on optical immersion lithography since it was first proposed. Two-beam immersion interferometric lithography can 
provide sub-30nm resolution. By changing the exposure parameters, such as the numerical aperture of the exposure 
system, the polarization states and wavelength of the illumination source, 30 nm polymeric nanospheres with different 
crystal structures can be fabricated. 
 
Keywords: immersion lithography, photonic crystals, interferometric lithography 
 

 
1. INTRODUCTION 

 
Photonic crystals, also known as photonic band gap materials, are periodic structures of dielectrics. Due to destructive 
interference, certain wavelength can not propagate through them. After all the previous theoretical treatments, 
Yablonovitch et al proved that photonic crystals are indeed possible in 1991.1 An artificial crystal structure was obtained 
by drilling holes into a high refractive index solid material. Microwave ranges from 13 GHz to 15 GHz can not 
propagate through this structure. Since then, much research has been done to investigate the fabrication of 2-D and 3-D 
photonic crystals. Two-dimensional photonic crystals can be achieved by conventional lithography and deep anisotropic 
etching. However, fabrication of 3-D microstructure is more challenging. Layer-by-layer stacking technique can be used 
for 3-D structure fabrication, however, its application can only extend to infrared regime.2 Three-dimensional structures 
can also be obtained by self-organized materials. The main problems with this method are lack of uniformity and 
unwanted defects.3 Holographic lithography has proven to be a practical method for fabricating 3-D photonic crystals by 
Campbell. With this method, a 3-D polymeric template with sub-micrometer periodicity was fabricated and utilized to 
create complementary structures with high refractive-index contrast.4 Here we present a novel method using two-beam 
interferometric lithography for 2-D and 3-D photonic crystals fabrication by utilizing standing wave.  The alignment of 
this technique is much easier compared with holographic lithography. Different crystal structures, features sizes can be 
achieved by changing the exposure parameters such as the illumination wavelength, polarization state and the numerical 
aperture. The simulation was done with ILSim software.5 The analysis will show that with proper arrangement and 
materials, 3-D structures with different periodicity ranging from sub-30 nm to visible are possible. 

 
 

2. STANDING WAVE EFFECT 
 
For a dielectric film coated over reflective substrate, when exposed to coherent illumination source, the interference 
between the reflected beam and the incident beam will form a distribution of intensity within the photoresist. The nodal 
spacing is λ/2ni, where ni is the refractive-index of the photoresist and λ is the illumination wavelength. The pattern 
resulted from standing wave effect is determined by the resist absorbance, resist thickness and the reflection at the resist 
substrate interface.6  The standing wave effect is not desired for lithographic process since it will degrade the pattern 



 

 

profile and it is controlled by applying bottom anti-reflective coating (BARC) and post exposure bake (PEB). Here we 
investigate the effect of standing wave from a different point of view. If the intensity of the wave reflected from the 
bottom of the resist is comparable with the incident wave, the interference pattern will be close to a 2-D photonic crystal. 
With two pass exposure, 3-D structures could be achieved with great flexibility and easy alignment. The large coherence 
length and high transparency of chemically amplified resist make the fabrication of 3-D structure feasible. 
 

3. METHODOLOGY 
 

The interference of two mutually coherent impinging beams forms a sinusoidal intensity distribution in the intersection. 
The pitch of the resulted pattern is: 
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where λvacuum is the illumination wavelength, nmedium is the refractive index of the immersion media and θ is the incident 
angle in the immersion media. In order to best satisfy the mutual coherence requirement, a symmetric Talbot interference 
system was built, as shown in Figure 1. In this interferometer, a laser beam is expanded and polarized. The polarization 
state can be adjusted by rotating the polarizer. The phase grating serves as the beamsplitter. The 1st and the -1st 
diffraction orders are used as the interference waves. They are directed perpendicularly into a quartz half ball, and finally 
form the sinusoidal intensity distribution on the center of the half ball. The turning mirrors, combined with the phase 
grating pitch, define the arrival angle θ on the wafer. On the image side, the effective NA is θsinquartzn . By changing 
the impinging angle, the resulted pitch size can be calculated from Equation 1. 

 
 
 

 
 

 
 
 

 

Figure 1. The experimental setup for two-beam interferometric lithography 



 

 

4. TWO-DIMENSIONAL IMAGING 
 
TOK012, a chemical amplifying photoresist, was used for exposure. To avoid line collapse, the topcoat (TSP3A) was 
used during exposure, and kept on the top of the resist during development. The wafer was cleaved and the resist was 
developed from the side. To achieve high reflection from the bottom of the resist, no BARC was coated on the wafer. 
The resist is coated on a bare silicon substrate directly with a thickness of 170 nm. A 40 nm non-developable TSP3A 
topcoat was coated on the top of the resist film. The reflection was simulated to be 63% for TE polarization and 50% for 
TM polarization. Table 1 is the summary of the film stack for the exposure. 
 

Table 1. Film stack for 2-D photonic crystal fabrication 
Layer Material Complex refractive index Thickness 
Topcoat TSP3A  1.414 40 nm 
Resist TOK012 1.71-0.039i 170 nm 
Substrate Silicon wafer 0.87-2.76i - 

 
Figure 2 shows the experimental results and simulation comparison for TE polarization exposure. With a resist thickness 
of 170nm, two and half standing wave nodes could be observed. The resultant SEM cross-sectional photographs for TE 
polarization at various exposure times are shown in Figure 2. The expose time is increased from photograph (a) to (c). 
The simulated light intensity distribution within the resist layer for 1.05NA using TE polarization is shown in Figure 2 
(d). The exposure contours in the figure agree well with the SEM cross-sectional photographs. The filling fraction can be 
varied by using different dose until the pattern collapse. 
 
 

 
 

 
 
 

Figure 2. Two-dimensional nanostructure fabricated with 2-beam interferometric lithography with TE polarization, 
1.05NA 



 

 

With TM polarization, different intensity distribution pattern can be obtained with different numerical aperture as shown in Figure 3. 
 
 

 
 

 
 
 
 

 
The different structure between TE and TM polarization is due to the polarization effect at high NA. For TE and TM 
polarization, the intensity distribution can be expressed as:  
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Define the image contrast as:  
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So the image contrast for TE and TM are  
1=TEC                              (5) 

)2cos( θ=TMC               (6) 
The contrast for TE polarization is always 1 while the contrast for TM polarization is a function of the interference angle 
θ. When θ is less than 45o the contrast decrease with θ and reaches zero when θ is equal to 45o. The contrast is negative 
for θ>45o, which means that the fringe bright stripes and dark stripes reverse.7 This phenomenon enables the fabrication 
of different 2-D and 3-D structures with TM polarization. 

 

Figure 3. Various two-dimensional nanostructure may be fabricated by 2-beam interference with TM polarization 
at different numerical aperture (interference angle)  



 

 

5. THREE-DIMENSIONAL IMAGING 
 

While two-beam exposure will result in 2-D structures, four-exposure will result in 3-D structures. After the first 
exposure, if the wafer can be rotated 90 degrees and exposed again, the superposition of the intensity will result in a 3-D 
structure. This is illustrated in Figure 4.  
 
 

 
 
 
 
Figure 5 shows the simulation for two-pass two-beam exposure with 193 nm TE polarized illumination source. The NA 
is chosen to be 1.2 to achieve equal pitches along x, y, and z direction.  

 

 
 
 
 

Top view with z = 50 nm 

Top view with z = 90 nm 

z = 50 nm 

z = 90 nm 

Figure 5. Two pass exposure with TE polarization at 45o interference angle results in a simple cubic structure 

Figure 4. Two beam exposure for 3-D structure fabrication 



 

 

 
With TE polarization, simple cubic structure can be achieved with lattice constant:  
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Therefore 40-nm lattice constant simple cubic structure is feasible with 193 nm illumination wavelength. The pitch along 
x and z may be different depending on the numerical aperture. Figure 6 is the simulation result for TM polarization, NA 
is 1.2. At this NA, due to image reversal, a body centered cubic structure can be achieved. The pattern is not uniform 
along z direction. This is due to the absorbance of the photoresist.  
 

 
 

 
 

 
 
All the simulations were done with 193 nm wavelength. Photonic crystals for visible wavelength can be obtained by 
scaling the illumination wavelength. For longer wavelength, a highly reflective coating may be needed to enable 
interference. A low absorption coefficient photoresist is desired to obtain uniform multiple periods along z direction.  

Cross-section of y = 0 nm 

Cross-section of y = 20 nm Top view with z = 100 nm 

Top view with z = 60 nm 

z = 60 nm 

z = 100 nm

Figure 6. Two pass exposure with TM polarization at 45o interference angle results in a body-centered cubic 
structure. 



 

 

By choosing different immersion media and high refractive-index photoresist, the fabrication of 30 nm nanospheres is 
possible. The resulted polymeric structure can be further utilized as template to create complementary structures of high 
refractive index dielectrics.  

6. CONCLUSION 
 

In this work, we showed that the standing wave could be utilized to fabricate photonic crystals. A two-dimensional 
nanostructure was successfully fabricated with two-beam interferometric lithography by utilizing standing wave with TE 
polarized illumination source. The numerical study for TM polarization exposure shows that different structures may be 
achieved with certain NAs. The simulation of two-pass two-beam interference shows that 3-D nanospheres with different 
period and crystal structure can be fabricated.  
 

ACKNOWLEDGEMENT 
 
The authors thank SRC for supporting this research through Task Number 1083 and DARPA/AFRL through contract 
number F33615-03-1-1472 
 
REFERENCES 
 
1. E. Yablonovitch, T. J. Gmitter, L. M. Leung, “Photonic band structure: The face-centered-cubic case employing 

nonspherical atoms”, Physical Review Letters v 67, n 17, p 2295-2298, 1991. 
2. J. G. Fleming, S. Y. Lin, “Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 um”, Optics 

Letters 24 (1), p 49-51, 1999. 
3. I. Mikulskas, S. Juodkazis, A. Jagminas, S. Meskinis, J. G. Gumas, J. Vaitkus, R. Tomasiunas. “Aluminium oxide 

film for 2D photonic structure: Room temperature formation”, Optical Materials, v 17, n 1-2, June, 2001, p 343-
346, 2001 

4. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J. Turberfield, “Fabrication of photonic crystals for 
the visible spectrum by holographic lithography”, Nature 404, 53 (2000) 

5.   Y. Fan, A. Bourov, L.Zavyalova, J. Zhou, A. Estroff, N. Lafferty, B. W. Smith, “ ILSim - A compact simulation tool 
for interferometric lithography”, in Optical Microlithography XVIII, B. W. Smith ed., Proc. SPIE 5754, n Part 3, p 
1805-1816, 2005. 

6.  B. W. Smith, “Resist processing”, in Microlithograpy Science and Technology, J. R. Sheats, B. W. Smith, eds. 
(Marcel Dekker, 1998), pp 541-546 

7.   Y. Fan, “Pushing the limits of hyper-NA optical lithography”, Doctoral dissertation, p 38-40, 2005 
 


