Solid Immersion and Evanescent Wave Lithography at Numerical Apertures > 1.60

Bruce Smith

Y. Fan, J. Zhou, L. Zavyalova, M. Slocum, J. Park, A. Bourov, E. Piscani, N. Lafferty, A. Estroff

> **Rochester Institute of Technology Center for Nanolithography Research**

Outline

- > The imaging limits of materials
- Pushing the limits of immersion lithography
- > The solid immersion lens
- Solid immersion lithography (SIL)
- Evanescent wave lithography (EWL)
- Imaging 26nm at 1.85NA

Material and Optical Limitations

 $NA = n_i \sin \theta$

- 1. Sin θ increases slowly at large angles (sin 68°=0.93)
- 2. Hyper-NA will be forced upon material refractive index
- 3. Resolution will become a function of the lowest index (fluid, optics, photoresist).

$$\frac{hp_{min}}{n_i \sin\theta} = \frac{k_1 \lambda}{n_i \sin\theta} = \frac{(0.25 \text{ to } 0.30)(193 \text{ nm})}{n_i (0.93)} = \frac{\frac{52}{n_i}}{n_i} \frac{62}{n_i} \text{ nm}$$

Technology Limits in Media

TIR from Snells' Law:

$\theta_{\rm c} = \sin^{-1}(n_{\rm L}/n_{\rm H})$

Technology Limits in Media

			Numerical Aperture								
			1.3	1.4	1.5	1.6	1.7	1.8	1.9	2	
Half-Pite	ch (nm)	k1=0.25	37	34	32	30	28	27	25	24	
		k1=0.30	45	44	39	36	34	32	30	29	
Angle in	n media	Water (1.44)	65°	76°							
-		HIF (1.55)	57°	65°	75°				TIR		
		HIF2 (1.65)	52°	58°	65°	76°					
		Photoresist (1.70)	50°	55°	62°	70°					
		HI PR (1.85)	45°	49°	54°	60°	67°	77°			
		Fused silica (1.54)	58°	65°	77 °						
		Sapphire (1.92)	43°	47°	52°	56°	62°	70°			

Impact of Angle in Photoresist Simple Approximations

Oblique absorption requires low k photoresist
Paraxial DOF scales with 1/sin²(θ)
Angles above 30° (0.85 NA) require attention
Oblique reflection becomes an issue > 30°

A Solid Immersion Lens

- A high index solid immersion lens is placed in close proximity to an image plane
- "Dry imaging for NA values > 1.0
- Used in optical storage applications

- Energy coupled into the thin film decays exponentially:

$$A(z) = e^{-\left(\frac{2\pi n_{upper}}{\lambda}\left[\sin^2\theta - \left(\frac{n_{lower}}{n_{upper}}\right)^2\right]^{1/2} + \alpha\right]z}$$

 $n_{upper} = lens$ $n_{lower} = air$ z = gap

Solid Immersion Lithography Sapphire SIL Breadboard

Sapphire Properties:

- Hexagonal, single-crystalline Al₂O₃
- n = 1.92, birefringence $\sim 8 \times 10^{-3}$
- Equilateral prism at 60° is 1.67NA
- Designed for NA 1.05~1.92
- MgF₂ is ideal AR layer

Challenges:

- Gap and gap control
- Birefringence
- CAR resist diffusion length limit
- Resist/BARC process optimization

Optical Coupling in the Prism

(a) Baseline (no wafer).

(a) Before pressure is applied.

(b) Reflection (with wafer).

(b) After pressure is applied.

Estimation of Gap Thickness

- Reflectance measurement used to estimate gap thickness.
- Gap controllable from 0-50nm
- 12nm air gap utilized.

Immersion solid (sapphire), $N_0=1.92$ Air gap, $N_1=1.00$, $d_1=0\sim50$ nm Resist, $N_2=1.71-0.399i$, $d_2=78$ nm BARC, N2=1.70-0.1i, 92 nm

Substrate N_{sub}=0.87-2.76i

Resist assembly

Solid Immersion Lithography at the Resist Limit

Center for Nanolithography Research

ILSim simulations

Evanescent Wave Lithography Beyond the Resist Limit - 26nm hp at 1.85NA

- NA (1.85) has been pushed higher than the index of the resist (1.70).
- Image pattern depth of <10 nm.</p>
- Sets the stage for new material development toward 25nm.
- Potential with TSI and hardmask imaging layers.

Gap Requirements / Tolerances

Assume 50% intensity loss across the image – *no loss in modulation* 1% gap Δ results in ~0.5-1% intensity Δ at 1.70NA – *dose control issue*

S·I·J

Implications of SIL and Evanescent Wave Lithography

- 1. SIL / EWL is useful for determining the ultimate limits of optical lithography in the 25nm regime.
- 2. NA possible beyond the fluid index.
- 3. Higher index photoresists may not be necessary if topsurface imaging (TSI) can be employed.
- 4. SIL may be feasible if small fluid gaps can be maintained.

Technology Limits in Media

		Numerical Aperture								
		1.3	1.4	1.5	1.6	· 1.7	1.8	1.9	2	
Half-Pitch (nm)	k1=0.25	37	34	32	30	28	27	25	24	
	k1=0.30	45	44	39	36	34	32	30	29	
Angle in media	Water (1.44)	65°	76°							
	HIF (1.55)	57°	65°	75°						
	HIF2 (1.65)	52°	58°	65°	76°					
	Photoresist (1.70)	50°	55°	62°	70°					
	HI PR (1.85)	45°	49°	54°	60°	67°	77 °			
	Fused silica (1.54)	58°	65°	77°						
	Sapphire (1.92)	43°	47°	52°	56°	62°	70°			

Can be achieved with immersion lithography

May be possible with SIL / EWL

Not likely

Acknowledgements

SRC, DARPA/AFRL, Sematech, ASML, Photronics, TOK, JSR, Rohm and Haas, Brewer, NYSTAR, Corning Tropel

