Approaching the NA of Water: Immersion Lithography at 193nm

Bruce Smith

Y. Fan, A. Bourov, L. Zavyalova, J. Zhou, F. Cropanese, N. Lafferty Rochester Institute of Technology M. Gower, D. Ashworth Exitech Inc. J. Webb Corning Tropel

Outline

- 193nm immersion lithography to 38nm p/2
- Interferometric vs. projection lithography
- 1.05NA projection microstepper
- Homogeneous immersion and increasing refractive index

Increasing NA with Immersion

 $NA = n_1 \sin (q_1) = n_2 \sin (q_2) = n_3 \sin (q_3)$

Increasing NA with Immersion

 $NA = n_1 \sin (q_1) = n_2 \sin (q_2) = n_3 \sin (q_3)$

Increasing NA with Immersion 193nm or 134nm

Scaling of NA or wavelength?

ArF Immersion Talbot Lithography Breadboard "Half-ball" system

+/- 1 Order Talbot interferometer preserves spatial coherence

Unstable excimer resonator for 0.5mm coherence length

Beam expansion increases length to 2mm (field size)

Dual etalons provide 6pm FWHM

Half ball interface allows NA to 1.35

193i Resist Images 55-80nm Resolution

Shipley XP1020 over AR, 50-100nm film thickness, TOK topcoat, TE polarization

80nm 1:1.5

65nm 1:1

60nm 1:1

R.I.T. 1829

55nm 1:1.5

55nm 1:1

193i Resist Images 45-50nm Resolution

Shipley XP1020 over AR, 50-100nm film thickness, TOK topcoat, TE polarization

50nm 1:3

45nm 1:1.5

45nm 1:1 70nm Shipley XP1020

45nm 1:1 80nm TOK ILP012

193i Resist Images 38nm Resolution

1.25NA Interference Lens, TE polarization

38nm p/2

Early results show good optical contrast and resist potential

38nm 1:1 70nm XP1020

Compact Talbot Lens

Entire 193nm Talbot system incorporated into compact lens 600nm phase grating produces +/-1st diffraction orders at 18.8° Talbot lens angle increases NA up to 1.35 Line/space and contact patterns are possible 2/4 beam interference allow for large tolerances Combined with beam expander and MgF₂ polarizer

193 Prism Lens Designs				
NA	half-pitch			
0.8	60nm			
1.05	45nm			
1.20	40nm			
1.35	36nm			

Talbot Immersion Research Tool

Workstation

Optical Column

- Linear guide bearing stage
- 200mm X-Y stage travel
- 6-8" robotic wafer handling
- Compact GAM ArF excimer
 5 mJ pulse energy
 6pm linewidth (FWHM)
 200 Hz rep. rate

Beam from ArF laser

5X 193nm fused silica beam expander

193nm MgF2 Rochon polarizer

Phase shift mask (600nm 3.1 – 4.2X)

Smith-Talbot prism (1.0NA – 1.35NA)

Water Handling at the Wafer Plane

Contact with water

Stepping with water

Interferometric Immersion vs. Projection Immersion Lithography

How well can 2-beam interference lithography predict projection lithography?

Resist Image Intensity Comparisons

Projection vs. Interferometric Lithography of 100nm 1:1 lines Resist index = 1.7, a=0 Vector Simulation

Full modulation (Best Focus)

Immersion IL Images with demodulation

LPM simulation

30% demodulation (150nm defocus)

LPM simulation

50% demodulation (220nm defocus)

193nm Immersion MicroStepper Exitech PS3000 / 1.05NA Corning Tropel AquaCAT

AquaCAT 193i Catadioptric Lens

Lens Specifications	
NA	1.05
Reduction	90X
Image field	0.1 mm
Wavelength	193.3 nm
Bandwidth	700 pm
Track length	210 mm +/- 10 mm
Entrance Pupil distance	210 mm +/- 10 mm
Material	SiO2
Immersion fluid	H2O
Working distance	>0.5 mm
# of elements	8
% Obscuration	<15%
Measured wavefront	<0.05 waves rms
	(SPIE 5377-74)

Fluid Injection and Meniscus

Bottom of assembly

Final glass surface

Water Introduction Considerations

- Method micro syringe pipette ~0.01 ml immersion volume in 3.5 sec using 10ml/hr Baxter APII syringe pump
- 2. Retention surface tensioning to hold meniscus

Water Meniscus Retention Experimental Test Approach

Early Image Results

Binary mask 0.70 Unpolarized illlumination 200-240nm pitch TOK ISP topcoat 80nm TOK ILP03 resist AR29 BARC

Remaining system action items:

Field stop and sigma apertures, environmental audit, PSM, system qualification, polarization control

Homogeneous Immersion Increasing refractive indices – the defocus effect

Homogeneous Immersion

Increasing refractive indices – the refractive effect

The glass index is not a concern unless surface is planar The maximum NA is limited to min[n_m,n_r] Reflectivity is determined by index disparity Matched indices is desirable

Increasing Water Index in the UV Inorganic approach

- UV-vis absorption involves excitation of e⁻ from ground
- Solvents provide "charge-transfer-to-solvent" transitions (CTTS)
- CTTS and \mathbf{I}_{max} for halide ions is well documented [1]

 $F^{-} < (OH)^{-} < CI^{-} < Br^{-} < I^{-}$

- Alkalai metal cations can shift **I**_{max} lower [2]

 $Cs^+ < Rb^+ < K^+ < Li^+ < Na^+ < NH_4^+ < H_3^+O$

- d l_{max} /dT is positive (~500ppm/°C), d l_{max} /dP is negative
- Goal to approach "anomolous dispersion" with low absorbance

[1] E. Rabinowitch, Rev. Mod. Phys., <u>14</u>, 112 (1942)

[2] G. Stein and A. Treinen, Trans. Faraday Soc. 56, 1393 (1960)

Effect of Anion on Absorption of Water

Anion in water	Absorption Peak [3]			
ŀ	5.48eV	227nm		
Br⁻	6.26	198		
Cŀ	6.78	183		
CIO ₄ -1	6.88	180		
HPO ₄ ²⁻¹	6.95	179		
SO ₄ ²⁻¹	7.09	175		
$H_2PO_4^-$	7.31	170		
HSO₄ ⁻	7.44	167		

[3] Various including M.J. Blandamer and M.F. Fox, <u>Theory and Applications of Charge-Transfer-To-Solvent</u> <u>Spectra</u>, (1968).

Measured Absorbance Spectra of Sulfates and Phosphates in Water

- Solutions normalized to mole concentration of cation
- Fluids with absorbance < 0.1/mm become interesting
- Mixtures follow EMA behavior

Fluid Refractive Index and Dispersion

Fluids Refractive index @		Cauchy parameters				
	193nm	248nm	Α	В	С	
	1 592	1 / 97	1 2007	0 0022	0 000134	
	1.303	1.407	1.3337	0.0032	0.000134	
CsCI@60%	1.561	1.466	1.3912	0.0020	0.000160	
H ₂ SO ₄ @20%	1.472	1.418	1.3635	0.0022	0.000068	
H ₂ SO ₄ @96%	1.516	1.469	1.4151	0.0027	0.000040	
NaHSO ₄ @44%	1.473	1.418	1.3643	0.0021	0.000074	
Cs ₂ SO ₄ @40%	1.481	1.422	1.3685	0.0020	0.000083	
Na ₂ SO ₄ @30%	1.479	1.423	1.3667	0.0023	0.000069	
H ₃ PO ₄ @20%	1.452	1.398	1.3486	0.0018	0.000077	
H ₃ PO ₄ @40%	1.475	1.420	1.3723	0.0015	0.000085	
H ₃ PO ₄ @85%	1.538	1.488	1.4316	0.0028	0.000042	
H ₂ O (DI)	1.435	1.373	1.3283	0.0021	0.000067	

Hydrogen Phosphates

*Data obtained by Cauchy model fit are labeled red. Experimental data are not available due to high absorption

Pure and Doped Water Comparisons

Water with 40 wt% Cs₂SO₄ ~100mm gap 117nm pitch

59nm 1:1 (50nm resist)

39nm 1:2 (50nm resist)

45nm 1:2 (70nm resist)

Water (HPLC grade) ~100mm gap 130nm pitch

65nm 1:1 (100nm resist)

Summary

- 193nm immersion lithography to 38nm p/2
- Early optical results of water are promising for n ~1.6
- Resolution limit with 1.6n fluid is 30nm p/2

248nm Water Immersion Lithography

75nm half-pitch 0.82NA

Acknowledgements: DARPA / AFRL, International SEMATECH, SRC, IBM, Exitech, Corning Tropel, ASML, Intel, Shipley, TOK, Photronics, Brewer Science, GAM Laser Inc.