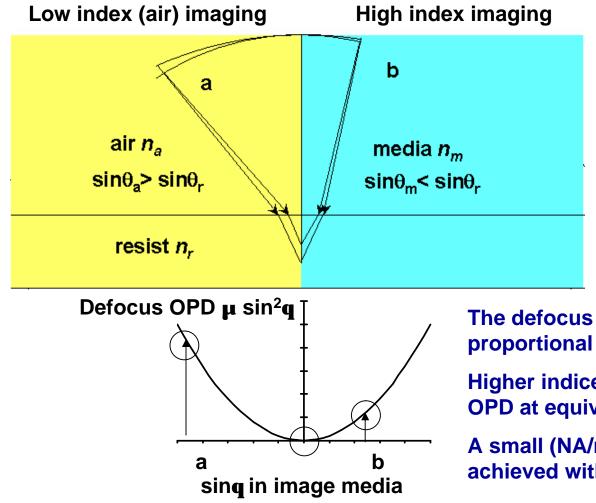
High Index Aqueous Immersion Fluids for 193nm and 248nm Lithography

B. W. Smith, Y. Fan, J. Zhou, A. Bourov, L. Zavyalova, E. Piscani, J. Park, D. Summers, F. Cropanese

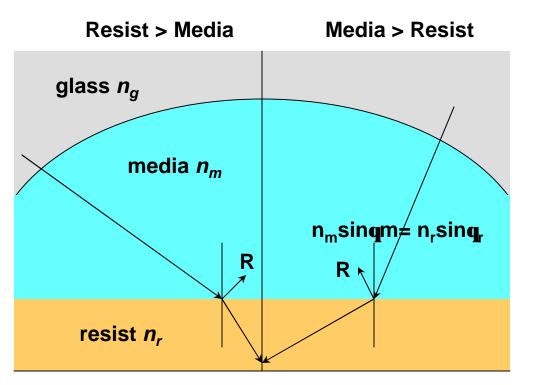
Rochester Institute of Technology Center for Nanolithography Research



193nm Immersion Lithography for sub-45nm nodes

- Sub-45nm 193i and sub-65nm 248i requires high index fluid development
- The 45nm node corresponds to a 0.33k1 at 1.44 NA (the index of water).
- A half-pitch of 38nm corresponds to a 0.28k1 at 1.44.
- Sub-45nm is not likely with water alone.
- Increasing the refractive index of the immersion fluid is desirable.

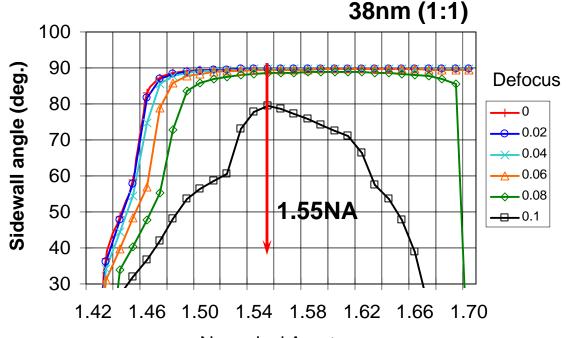
Homogeneous Immersion Increasing refractive indices – the defocus effect


Center for Nanolithography Research www.rit.edu/lithography The defocus wave aberration is proportional to $\sin^2 q$

Higher indices reduce defocus OPD at equivalent NA values

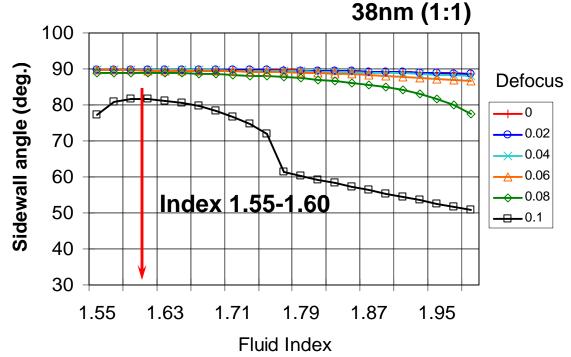
A small (NA/n) is desirable - achieved with high media index

Homogeneous Immersion


Increasing refractive indices – the refractive effect

The glass index is not a concern unless surface is planar The maximum NA is limited to min[n_m,n_r] Reflectivity is determined by index disparity Index matching is desirable - fluid index should be close to resist index

193nm Immersion for sub-45nm NA Requirements



Numerical Aperture

- Resist simulations of 38nm (1:1) in a 70nm resist LPM
- TE polarization and alternating PSM
- Sidewall angle used as metric vs. defocus
- Target NA is 1.55 not possible with water

193nm Immersion for sub-45nm Fluid Index Requirements

- NA held at 1.55
- Fluid index varied from 1.55 to 2.0
- Target fluid index is 1.55-1.60

Increasing Water Index in the UV Inorganic approach

- UV-vis absorption involves excitation of e⁻ from ground
- Solvents provide "charge-transfer-to-solvent" transitions (CTTS)
- CTTS and \mathbf{I}_{max} for halide ions is well documented [1]

 $F^{-} < (OH)^{-} < CI^{-} < Br^{-} < I^{-}$

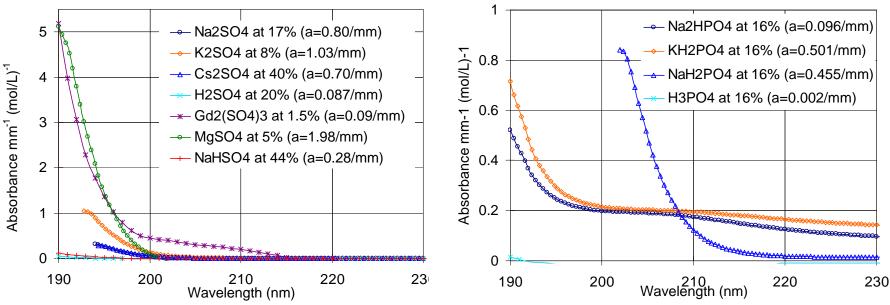
- Alkalai metal cations can shift **l**_{max} lower [2]

 $Cs^{+} < Rb^{+} < K^{+} < Li^{+} < Na^{+} < NH_{4}^{+} < H_{3}^{+}O$

- d l_{max} /dT is positive (~500ppm/°C), d l_{max} /dP is negative
- Goal to approach "anomolous dispersion" with low absorbance

[1] E. Rabinowitch, Rev. Mod. Phys., <u>14</u>, 112 (1942)

[2] G. Stein and A. Treinen, Trans. Faraday Soc. <u>56</u>, 1393 (1960)


Effect of Anion on Absorption of Water

Anion in water	Absorption Peak [3]					
 -	5.48e	V 227nm				
Br [_]	6.26	198	Halogens Potential 248nm			
Cl	6.78	183	candidates			
CIO ₄ -1	6.88	180				
HPO ₄ ²⁻¹	6.95	179				
SO ₄ ²⁻¹	7.09	175	Phosphates and Sulfates			
$H_2PO_4^-$	7.31	170	Potential 193nm/248nm candidates			
HSO ₄ -	7.44	167				

[3] Various sources including M.J. Blandamer and M.F. Fox, <u>Theory and Applications of Charge-Transfer-To-</u> <u>Solvent Spectra</u>, (1968).

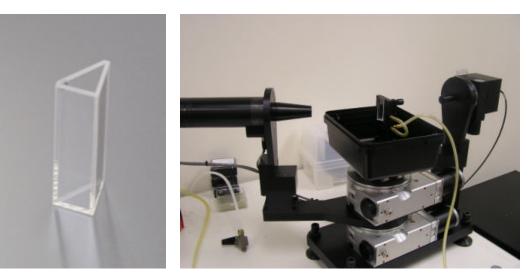
Measured UV Absorbance Spectra of Sulfates and Phosphates in Water

- Solutions normalized to mole concentration of cation
- Fluids with absorbance < 0.1/mm become interesting
- Several candidates for 248nm, fewer for 193nm

- Impurities in research grade material may contribute

Fluid Absorbance at 193nm and 248nm

Fluids	a(mm ⁻¹ ,@193nm)) a(mm ⁻¹ ,@248nm)		
CaCl ₂ @20%	-	0.0257		
CsCl [_] @20%	-	0.0022		
Csl@20%	-	-		
KCI@20%	-	0.0031		
ZnBr ₂ @20%	-	0.0129		
Na ₂ SO ₄ @17%	1.144	0.0014		
K ₂ SO ₄ @8%	1.03	6.00E-4		
Cs ₂ SO ₄ @40%	0.706	0.0017		
Gd ₂ (SO ₄) ₃ @1.5%	0.0085	0		
MgSO ₄ @5%	1.05	0		
NaH ₂ PO₄@16%	0.429	0.110		
Na ₂ HPO ₄ @16%	4.72	0.0154		
KH ₂ PO₄@16%	0.571	0.163		
H ₃ PO ₄ @20%	0.0251	0.00213		
H ₂ SO ₄ @20%	0.246	0.00183		
HCI@20%	2.91	0.0015		

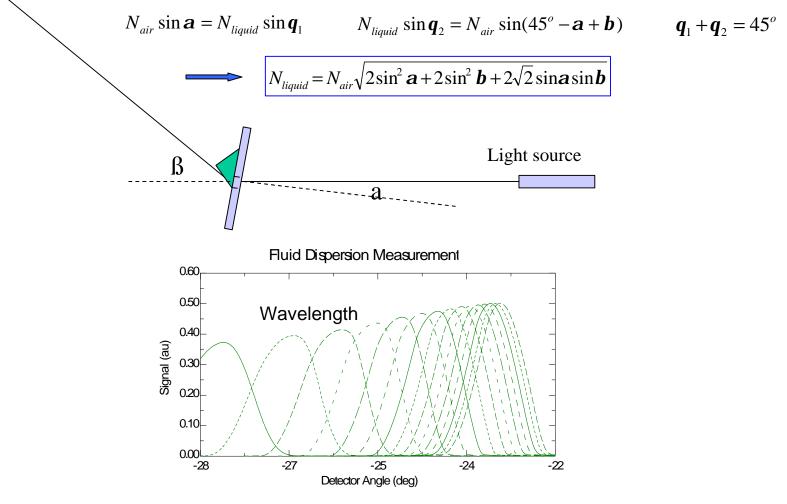


Center for Nanolithography Research www.rit.edu/lithography

*Data obtained by fit of absorption peak

Index Measurement of Fluids Screening of Inorganic Candidates

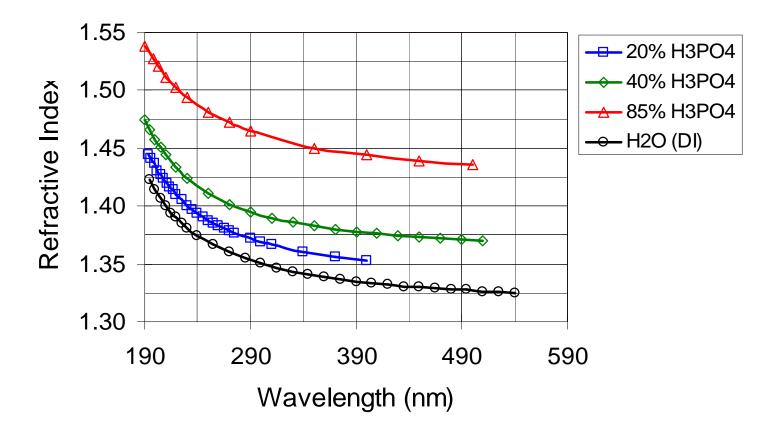
- Fluid index and dispersion measurement needed for screening
- Measurement to 1x10⁻³ is adequate for initial work
- Minimum Deviation Method is accurate to < 1x10⁻⁴
- WVASE tool provides an accurate goniometer and detector


Fluid prism cell

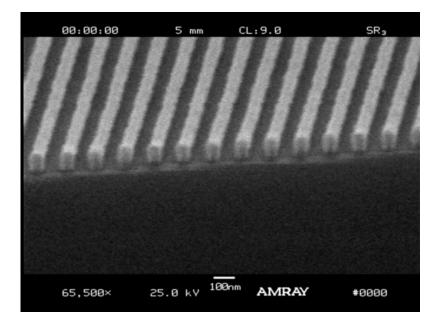
Modified Woollam tool for fluid index

Minimum Deviation Method

Detector


Fluid Refractive Index and Dispersion

	Fluids	Refractive index @		Cau	Cauchy parameters		
		193nm	248nm	Α	В	С	
	HCI@37%	1.583	1.487	1.3997	0.0032	0.000134	
	CsCl@60%	1.561	1.466	1.3912	0.0020	0.000160	
	H ₂ SO ₄ @20%	1.472	1.418	1.3635	0.0022	0.000068	
	H ₂ SO ₄ @96%	1.516	1.469	1.4151	0.0027	0.000040	
	NaHSO ₄ @44%	1.473	1.418	1.3643	0.0021	0.000074	
	Cs ₂ SO ₄ @40%	1.481	1.422	1.3685	0.0020	0.000083	
	Na ₂ SO ₄ @30%	1.479	1.423	1.3667	0.0023	0.000069	
Hydrogen Phosphates	H ₃ PO ₄ @20%	1.452	1.398	1.3486	0.0018	0.000077	
	H ₃ PO ₄ @40%	1.475	1.420	1.3723	0.0015	0.000085	
	H ₃ PO ₄ @85%	1.538	1.488	1.4316	0.0028	0.000042	
	H ₂ O (DI)	1.435	1.373	1.3283	0.0021	0.000067	


Center for Nate Research odel fit are labeled red. Experimental data are not available due to www.rit.edu/lithogram/absorption

Refractive Index of Hydrogen Phosphates

Imaging in 85% Hydrogen Phosphate Fluid Refractive Index 1.54

68nm imaging TE polarization

- 193nm resist (100nm Shipley 1020B) imaged with no top-coat
- No measured thickness loss or surface effects
- Surface contamination effects are reduced compared to water
- No contamination at optics interface
- Initial results are encouraging

Summary

- Sub-45nm 193i and sub-65nm 248i requires high index fluid development

- A minimum deviation method has been developed for fluid index screening

- Immerison fluid index has been increased to 1.54 (193nm) and 1.49 (248nm) using halides, phosphates, and sulfates

Acknowledgements: International SEMATECH, DARPA / AFRL, SRC, IBM, Exitech, Corning Tropel, ASML, Intel, Shipley, TOK, Photronics, ARCH

