Benefiting from Polarization: Effects at High-NA Imaging

Bruce W. Smith

L. Zavyalova, A. Estroff, Y. Fan, A. Bourov Rochester Institute of Technology P. Zimmerman International SEMATECH and Intel J. Cashmore Exitech

Polarization Issues and High-NA

Illumination Effects

Oblique Angles from High NA

- Polarization effects scale with cosine of angle.
- TM state will interfere exactly at normal incidence only.
- Image is the sum of TE and TM.

- Aerial image metrics no longer useful.

Images in Resist Dipole and Cross Quad Illumination

Unpolarized Dipole $s_c=1.0, s_r=0.25$ Contrast = 0.42 Unpolarized Cross - Quadrupole $s_c=1.0, s_r=0.25$

Images in Resist Polarized Dipole Illumination

X-Orient / Y-Polarization Dipole $s_c=1.0$, $s_r=0.25$ Contrast = 0.69 Y-Orient / X-Polarization Dipole $s_c=1.0$, $s_r=0.25$ Contrast = 0.0

Images in Resist Polarized Cross Quad Illumination

TE Polarized Cross Quad Dipole $s_c=1.0$, $s_r=0.25$ Contrast = 0.38

Diffraction Energy in Pupil

Images in Resist Radial and Azimuthal Annular

Azimuthal Polarized Annular Dipole $s_c=1.0$, $s_r=0.25$ Contrast = 0.23 Radial Polarized Annular Dipole $s_c=1.0$, $s_r=0.25$ Contrast = 0.02

Images in Resist Polarized Annular vs. C-Quad

Azimuthal Polarized Annular Dipole $s_c=1.0$, $s_r=0.25$ Contrast = 0.23 TE Polarized C-Quad Dipole $s_c=1.0$, $s_r=0.25$ Contrast = 0.38

Images in Resist through Focus Radial vs. TE-Dipole

- Annular illumination will be used in dipole mode at low k₁
- TE polarized cross quadrupole may be superior to TE annular

Implementing Polarization ISMT / Exitech 0.85NA 157nm

VUV Polarizer Performance

Performance specifications

Principal (TM) Transmittance: >96%T Extinction Ratio: ~0.03 Transmission: 51.5%

	Efficiency 1-T(s)/T(p)	Extinction T(s)T(p)	Transmission [T(p)+T(s)]/2		
1 pair	0.500	0.500	0.750		
2 pairs	0.750	0.250	0.625		
3 pairs	0.875	0.125	0.562		
4 pairs	0.938	0.062	0.531		
5 pairs	0.969	0.031	0.515		

SEMATECH

Binary 60nm 1:1, Polarized Imaging

Focus (positive direction) -

EM-4700-1 2.0kV 2.7mm x150k SE(U) 1/12/04

(0.05 µm steps)

60nm 1:1, Binary mask DIPOLE illum 0.77s_c/0.1s_p

AltPSM 70nm 1:1 0.3s, Polarized

Focus (positive direction)

(0.05 µm steps)

Mask Feature Effects

Polarizing wires (Wood, Philosophical Magazine, 1902). Resonant high orders (Rayleigh, Philosophical Magazine, 1907).

$$\boldsymbol{l} = \frac{\boldsymbol{p}}{\boldsymbol{k}} (\boldsymbol{n} \pm \sin \boldsymbol{q})$$

Mask Polarization Graded Cr_xO_yN_z over Cr_xN_y

	Cr-O-N Stack Composition						
	Layer 1	Layer 2	Layer 3	Layer 4			
Cr	90.00%	18.90%	9.45%	0.00%			
CrN	10.00%	2.10%	1.05%	0.00%			
CrOx	0.00%	79.00%	89.50%	100.00%			

	Data for Cr-O-N Stack (Layer 1 is closest to substrate, Layer 4 is furthest)								
	Layer 1		Layer 2		Layer 3		Layer 4		
	193nm	248nm	193nm	248nm	193nm	248nm	193nm	248nm	
n	0.8209	0.8863	1.5649	1.8142	1.6740	1.9734	1.7782	2.1260	
k	1.1825	1.8700	0.4121	0.7391	0.3597	0.6584	0.3148	0.5918	
Thickness (A)	900	900	133	133	133	133	133	133	

1st Order Polarization

Grating Period (µm)

k_{1.}" A. Estroff et al 5377-220

+1st Order Polarization Asymmetrical TE _{40%} 14% Degree of 12% **Degree of Polarization** Polarization

Order **Polarization**

1.2NA 4X Imaging System 17.45° in air, 11.5° in glass

Transmission

"Mask induced polarization effects at low k₁ " A. Estroff et al 5377-220

Grating Period (mm)

Thin Film Reflection Effects

ARC Reflectivity at Normal Incidence 193nm in Resist (1.70, 0.005), 2% reflectivity contours

ARC Reflectivity at 45° Incidence Unpolarized radiation, 2% reflectivity contours

ARC Reflectivity at 45° Incidence TE Polarization, 2% reflectivity contours

200

0

0

200

ARC thickness (nm)

0

ARC thickness (nm)

ARC Reflectivity at 45° Incidence TM Polarization, 2% reflectivity contours

200

0

ARC thickness (nm)

0

200

ARC thickness (nm)

0

Single Layer ARC Optimization for 1.2NA

ARC for 0-45° TE/TM Polarization Multilayer Designs

Conclusions

- TE polarized illumination can provide resolution enhancement, TE C-Quad may be useful
- Early results at 157nm confirm TE polarized imaging
- Mask induce polarization effects exist, the impact is to be seen (e.g. Mag).
- Resist stacks require full angle / polarization optimization

