
Using MATLB for stability analysis in

Controls engineering

Cyrus Hagigat Ph.D., PE

College of Engineering

University of Toledo, Toledo, Ohio

Abstract

Analyses of control systems require solution

of differential equations. Such solutions

demonstrate performance in time domain

and are used for determining stability

boundaries. However, solving the

differential equations for moderately

complex control systems without use of

numerical techniques are at times

impossible.

MATLAB can be used to solve differential

equations and MATLAB can be used to

quickly construct a Root-Locus plot for a

control system that determines the stability

boundaries for the control system without

the need to solve the differential equations.

This article demonstrates use of MATLAB

for both solving system differential

equations and constructing Root-locus plots.

Introduction

The concepts discussed in this article are

using MATLAB to generate Root-Locus

plots for control systems and using the plots

to determine critical boundaries for control

system analysis, and using MATLAB to

determine the time response of control

systems.

The application of Root-Locus plots in

control system analysis are determination of

parameters that lead to an unstable behavior

of a control system and determining

boundaries where the control system

behavior changes in the stable region. Root-

Locus plots can be generated by manual

techniques. However, the manual techniques

are time consuming. MATLAB can be used

to generate Root-Locus plots quickly.

One of the goals of a control system analysis

is determination of the response of the

system in time domain. MATLAB can be

used to determine the time domain response

of a control system in most instances.

However, there can be situations where

MATLAB cannot be used for this purpose

because the results while mathematically

correct are not in a readily usable format. In

this article application of MATLAB and its

limitations for time response analysis of

control systems are discussed.

Nomenclature

G(S): Transfer function of a closed loop

control system in Laplace domain.

H(S): Feedback multiplier of a control

system in Laplace domain.

R(S): Input to a control system in Laplace

domain.

C(S): Output of a control system in Laplace

domain.

K: Constant that can be varied to change

control system behavior.

S: Parameter in Laplace domain used to

describe elements of the control system.

f(t): Control system response in time

domain.

Technical Discussion

A closed loop control system in its simplest

form in Laplace domain is represented by

figure 1.

Figure 1: Representation of a closed

 loop control system in its simplest form

 in Laplace domain

The open loop equivalent of the system of

figure 1 is shown in figure 2.

Figure 2: open loop representation of the

Closed loop system of figure 1

An example of a system of the type of figure

1 is shown in figure 3 [1]. Figure 3

represents a preliminary design that contains

a gain factor K which is yet to be

determined.

Figure 3: Example of a typical controls

block diagram

having a gain factor of K

in order to determine the numerical values

for use in MATLAB for getting a Root-

Locus diagram the “G(S)H(S)” of the closed

loop control block without the gain factor K

must be determined.

For the block diagram of figure 3 the

“G(S)H(S)” factor is shown in equation (1).

Equation (1) once simplified becomes

equation (2).

In order to plot the Root-Locus plot for the

expression of equation (2), the following

sequence of codes must be used in

MATLAB.

num= [1 5 6];

den= [1 1 0];

rlocus(num,den);

v=[-4 1 -1 1]; axis(v)

MATLAB generates the Root-Locus plot

shown in figure 4.

Figure 4: Root-Locus plot of system of

figure 3

Since the entire Root-Locus plot of figure 4

is to the left of the imaginary axis, it is

concluded that the system of figure 3 is

stable for all values of K. The type of Root-

Locus plot shown in figure 4 points to

critical system performance differences

based on the location where the plot crosses

the real axis.

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Root Locus

Real Axis

Im
a
g
in

a
ry

 A
x
is

By using the formula “1 + G(S)H(S) = 0”,

an expression for K for the system of figure

3 can be calculated [2]. Using this

technique, K for system of figure 3 is

determined to be as shown in equation (3).

Setting dk/ds=0 results in a polynomial

equation that when solved results in two

values for S. They are

S1 = -0.634 & S2 = -2.366.

Substituting the values of S1 & S2 into

equation (3) results in K1 = 0.0718 & K2 =

14. K1 & K2 are the K values that correspond

to the Root-Locus plot of figure 4, and

therefore they are the K values that form the

boundaries where the system of figure 3

behaves differently. Based on the values of

K1 & K2 there are three distinct ranges of

interest for K. They are: K<0.0718, 0.0718

<K< 14 & K>14.

In order to evaluate the three ranges for K,

the following three values corresponding to

the three ranges are chosen for K.

K= 0.05

K= 7

K= 15

Using the formula of figure 2, the open loop

transfer function for the system of figure 3

becomes

Substituting the K values of 0.05, 7 and 15

into equation (4) results in formulas (5), (6)

& (7) for the transfer function.

Equations (5), (6) & (7) can be used in
MATLAB to obtain the system response for
various inputs.

The following is the MATLAB script for
getting an impulse response for the system
represented by equation (5).

 num= [.05 .25 .3];
 den= [1.05 1.25 .3];
 impulse (num, den)

Figure 5 is the impulse response for system
of equation (5) generated by MATLAB.

Figure 5: Impulse response of system of

equation (4) for a K value of .05

The following is the MATLAB script for

getting an impulse response for the system

represented by equation (6).

num= [7 35 42];

den= [8 36 42];

impulse (num, den)

Figure 6 is the impulse response for system

of equation (6) generated by MATLAB.

Figure 6: Impulse response of system of

equation (4) for a K value of 7

The following is the MATLAB script for

getting an impulse response for the system

represented by equation (7).

num= [15 75 90];

den= [16 76 90];

impulse (num, den)

Figure 7 is the impulse response for system

of equation (7) generated by MATLAB.

0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Impulse Response

Time (sec)

A
m

p
li
tu

d
e

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Impulse Response

Time (sec)

A
m

p
li
tu

d
e

Figure 7: Impulse response of system of

equation (4) for a K value of 15

A comparison of figures 5, 6 & 7 shows that

the system responds differently to a unit

impulse input for different values of K. The

parameters of interest in the case of a unit

impulse input are the initial displacement

and the settling time for the system to return

to equilibrium.

The following is the MATLAB script for

getting a unit step input response for the

system represented by equation (5).

num= [.05 .25 .3];

den= [1.05 1.25 .3];

step (num, den)

Figure 8 is the system response for a unit

step input for system of equation (5)

generated by MATLAB.

Figure 8: Response of system of equation

(4) for a K value of .05

The following is the MATLAB script for

getting a unit step input response for the

system represented by equation (6).

num= [7 35 42];

den= [8 36 42];

step (num, den)

Figure 9: Response of system of equation

 (4) for a K value of .7

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Impulse Response

Time (sec)

A
m

p
li
tu

d
e

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Step Response

Time (sec)

A
m

p
li
tu

d
e

0 1 2 3 4 5 6
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04
Step Response

Time (sec)

A
m

p
lit

u
d
e

The following is the MATLAB script for

getting a unit step input response for the

system represented by equation (7).

num= [15 75 90];

den= [16 76 90];

step (num, den)

Figure 10: Response of system of equation

 (4) for a K value of 15

A comparison of figures 8, 9 & 10 shows

that the system responds differently to a unit

step input for different values of K. The

parameters of interest in the case of a unit

step input are the initial displacement and

the settling time for the system to reach the

value of unity which is guided by the unit

step input.

In order to find the response to a sinusoidal

input for the three selected K values the

transfer functions for equations (5), (6) &

(7) for a sinusoidal input must be calculated.

Assume a sinusoidal input of “2 sin (3t)”

where the frequency of vibration is in units

of rad/sec.

The Laplace transform for the sinusoidal

input is “6/ S2 + 9”. [3]

Transfer functions for equations (5), (6) &

(7) for a sinusoidal input of “2 sin (3t)” are

as shown in equations (8), (9) & (10).

To get the system response for transfer

functions shown in equations (8), (9) & (10)

their inverse Laplace transform must be

calculated. MATLAB cannot be effectively

used to find the inverse Laplace transforms

because the numerical techniques used by it

do not present the solutions in a usable

format. Equation (11), (12) & (13) are the

inverse Laplace transforms calculated for

equations (8), (9) & (10) by manual

calculation techniques. [5]

f(t) = 0.26 e-0.34t – 0.14 e-0.86t + 0.083
sin (3t) – 0.12 cos (3t) (11)

f(t) = e-2.25t (-0.38 sin 0.43t + 0.15 cos
0.43t) + 1.9 sin 3t - 0.15 cos 3t (12)

0 0.5 1 1.5 2 2.5 3 3.5
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01
Step Response

Time (sec)

A
m

p
li
t
u
d
e

f(t) = 0.37 e-2.5t – 0.3 e-2.25t +1.95 sin
(3t) – 0.07 cos (3t) (13)

Further simplification of equations (11), (12) &

(13) result in equations (14), (15) & (16).

f(t) = 0.26 e-0.34t – 0.14 e-0.86t + 0.15
sin (3t – 0.6) (14)

f(t) = 0.17 e-2.25t sin (0.43t – 1.19) +
1.9 sin (3t – 1.49) (15)

f(t) = 0.37 e-2.5t – 0.3 e-2.25t + 1.95 sin
(3t – 1.53) (16)

Reviews of equations (14), (15) & (16) show

that equation (15) indicates a different type

of system characteristic compared to

equations (14) and (16). Equation (15)

shows that for values of K between 0.0718

& 14 the system behaves differently

compared to outside of this range. Figures

11 through 13 illustrate this point

graphically. These results show that the

root-locus technique is able to identify the

segments of the system that behave

differently from a mathematical point of

view. However, a comparison of figures 12

and 13 also demonstrate that from a

practical point of view there may not be a

difference between systems that

mathematically appear different.

Figure 11: Response of system of equation

(5) to a sinusoidal input. This plot represents

 equation (14)

Figure 12: Response of system of equation

(6) to a sinusoidal input. This plot represents

 equation (15)

Figure 13: Response of system of equation

(7) to a sinusoidal input. This plot represents

 equation (16)

Summary & Conclusion

In this article MATLAB was used to

generate a Root-Locus plot for a closed loop

control system that was represented by its

block diagram in Laplace domain. The

primary purpose of a Root-Locus plot is

stability analysis of a control system. All the

portions of a Root-Locus plot that are to the

left of the imaginary axis represent the

stable portion of the system and the plot

portions to the right of the imaginary axis

represent the unstable portion of the system.

For the example presented in this article the

system was completely stable.

In addition to stability analysis, a Root-

Locus plot can be used to determine the

critical areas where the control system

behavior changes significantly. These areas

can be determined by calculating the

parameters where the plot crosses the real

axis. In the example presented in this article,

the plot crossed the real axis at two

locations, and the constant values where the

plot crossed the real axis were shown to be

the boundaries where the system behavior

changed mathematically and physically.

Once the parameters for a stable control

system are determined, the control system

must be analyzed for standard inputs.

Among standard inputs are impulse, step

function and sinusoidal inputs.

In this article MATLAB was used to

determine the control system response for an

impulse input and a step input. Additionally,

it was shown that the MATLAB output is

not usable for a sinusoidal input. Classical

techniques were used to determine the

output for a sinusoidal input. Comparisons

of the results obtained by classical

techniques for the regions identified by the

Root-Locus plot were made. The results

obtained by the classical techniques

confirmed that the Root-Locus plot does

indeed identify boundaries where the system

performance changes.

References:

1. Modern Control Engineering; Fifth

Edition; Katsuhiko Ogata; problem

A-6-1.

2. Introduction to Control Systems ;

D.K. Anand; page 203.

3. Transform Circuit Analysis for

Engineering and Technology;

William D. Stanley; Appendix B.

4. Modern Control Systems; Third

Edition; Richard C. Dorf; Robert H.

Bishop; page 87.

5. Technical Calculus. Special Edition

ISBN 0-536-98727-0.

