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Abstract 

Analyses of control systems require solution 

of differential equations. Such solutions 

demonstrate performance in time domain 

and are used for determining stability 

boundaries. However, solving the 

differential equations for moderately 

complex control systems without use of 

numerical techniques are at times 

impossible. 

MATLAB can be used to solve differential 

equations and MATLAB can be used to 

quickly construct a Root-Locus plot for a 

control system that determines the stability 

boundaries for the control system without 

the need to solve the differential equations. 

This article demonstrates use of MATLAB 

for both solving system differential 

equations and constructing Root-locus plots. 

 

Introduction 

The concepts discussed in this article are 

using MATLAB to generate Root-Locus 

plots for control systems and using the plots 

to determine critical boundaries for control 

system analysis, and using MATLAB to 

determine the time response of control 

systems.  

The application of Root-Locus plots in 

control system analysis are determination of 

parameters that lead to an unstable behavior 

of a control system and determining 

boundaries where the control system 

behavior changes in the stable region. Root-

Locus plots can be generated by manual 

techniques. However, the manual techniques 

are time consuming. MATLAB can be used 

to generate Root-Locus plots quickly.  

One of the goals of a control system analysis 

is determination of the response of the 

system in time domain. MATLAB can be 

used to determine the time domain response 

of a control system in most instances. 

However, there can be situations where 

MATLAB cannot be used for this purpose 

because the results while mathematically 

correct are not in a readily usable format. In 

this article application of MATLAB and its 

limitations for time response analysis of 

control systems are discussed.  

 

Nomenclature 

G(S): Transfer function of a closed loop 

control system in Laplace domain. 

H(S): Feedback multiplier of a control 

system in Laplace domain. 

R(S): Input to a control system in Laplace 

domain. 

C(S): Output of a control system in Laplace 

domain. 

K: Constant that can be varied to change 

control system behavior. 

S: Parameter in Laplace domain used to 

describe elements of the control system. 

f(t): Control system response in time 

domain. 

 

Technical Discussion 

A closed loop control system in its simplest 

form in Laplace domain is represented by 

figure 1. 
 

 
 

Figure 1: Representation of a closed  

        loop control system in its simplest form  

        in Laplace domain 
 



 

The open loop equivalent of the system of 

figure 1 is shown in figure 2. 
 

 
Figure 2: open loop representation of the  

Closed loop system of figure 1 
 
An example of a system of the type of figure 

1 is shown in figure 3 [1]. Figure 3 

represents a preliminary design that contains 

a gain factor K which is yet to be 

determined. 

 
 

Figure 3: Example of a typical controls 

block diagram  

having a gain factor of K 

 

in order to determine the numerical values 

for use in MATLAB for getting a Root-

Locus diagram the “G(S)H(S)” of the closed 

loop control block without the gain factor K 

must be determined. 

For the block diagram of figure 3 the 

“G(S)H(S)” factor is shown in equation (1). 

 

Equation (1) once simplified becomes 

equation (2). 

 

In order to plot the Root-Locus plot for the 

expression of equation (2), the following 

sequence of codes must be used in 

MATLAB. 

num= [1 5 6]; 

den= [1 1 0]; 

rlocus(num,den); 

v=[-4 1 -1 1]; axis(v) 

MATLAB generates the Root-Locus plot 

shown in figure 4. 

 

Figure 4: Root-Locus plot of system of 

figure 3 

Since the entire Root-Locus plot of figure 4 

is to the left of the imaginary axis, it is 

concluded that the system of figure 3 is 

stable for all values of K. The type of Root-

Locus plot shown in figure 4 points to 

critical system performance differences 

based on the location where the plot crosses 

the real axis. 
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By using the formula “1 + G(S)H(S) = 0”, 

an expression for K for the system of figure 

3 can be calculated [2]. Using this 

technique, K for system of figure 3 is 

determined to be as shown in equation (3). 

 

Setting dk/ds=0 results in a polynomial 

equation that when solved results in two 

values for S. They are  

S1 = -0.634 & S2 = -2.366. 

Substituting the values of S1 & S2 into 

equation (3) results in K1 = 0.0718 & K2 = 

14. K1 & K2 are the K values that correspond 

to the Root-Locus plot of figure 4, and 

therefore they are the K values that form the 

boundaries where the system of figure 3 

behaves differently. Based on the values of 

K1 & K2 there are three distinct ranges of 

interest for K. They are: K<0.0718, 0.0718 

<K< 14 & K>14. 

In order to evaluate the three ranges for K, 

the following three values corresponding to 

the three ranges are chosen for K. 

K= 0.05 

K= 7 

K= 15 

Using the formula of figure 2, the open loop 

transfer function for the system of figure 3 

becomes 

 

Substituting the K values of 0.05, 7 and 15 

into equation (4) results in formulas (5), (6) 

& (7) for the transfer function. 

 

 

 
Equations (5), (6) & (7) can be used in 
MATLAB to obtain the system response for 
various inputs. 
 
The following is the MATLAB script for 
getting an impulse response for the system 
represented by equation (5). 
 
 num= [.05 .25 .3]; 
 den= [1.05 1.25 .3]; 
 impulse (num, den) 
 
Figure 5 is the impulse response for system 
of equation (5) generated by MATLAB. 
 



 
Figure 5: Impulse response of system of  

equation (4) for a K value of .05 

 

The following is the MATLAB script for 

getting an impulse response for the system 

represented by equation (6). 

 

num= [7 35 42]; 

den= [8 36 42]; 

impulse (num, den) 

 

Figure 6 is the impulse response for system 

of equation (6) generated by MATLAB. 

 

 
Figure 6: Impulse response of system of  

equation (4) for a K value of 7 

 

The following is the MATLAB script for 

getting an impulse response for the system 

represented by equation (7). 

 

num= [15 75 90]; 

den= [16 76 90]; 

impulse (num, den) 

 

Figure 7 is the impulse response for system 

of equation (7) generated by MATLAB. 
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Figure 7: Impulse response of system of  

equation (4) for a K value of 15 

 

A comparison of figures 5, 6 & 7 shows that 

the system responds differently to a unit 

impulse input for different values of K. The 

parameters of interest in the case of a unit 

impulse input are the initial displacement 

and the settling time for the system to return 

to equilibrium. 

 

The following is the MATLAB script for 

getting a unit step input response for the 

system represented by equation (5). 

 

num= [.05 .25 .3]; 

den= [1.05 1.25 .3]; 

step (num, den) 

 

Figure 8 is the system response for a unit 

step input for system of equation (5) 

generated by MATLAB. 

 

 
Figure 8: Response of system of equation  

(4) for a K value of .05   
 
The following is the MATLAB script for 

getting a unit step input response for the 

system represented by equation (6). 

 

num= [7 35 42]; 

den= [8 36 42]; 

step (num, den) 

 
Figure 9: Response of system of equation 

 (4) for a K value of .7 
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The following is the MATLAB script for 

getting a unit step input response for the 

system represented by equation (7). 

 

num= [15 75 90]; 

den= [16 76 90]; 

step (num, den) 
 

Figure 10: Response of system of equation  

            (4) for a K value of 15   

   

A comparison of figures 8, 9 & 10 shows 

that the system responds differently to a unit 

step input for different values of K. The 

parameters of interest in the case of a unit 

step input are the initial displacement and 

the settling time for the system to reach the 

value of unity which is guided by the unit 

step input. 

 

In order to find the response to a sinusoidal 

input for the three selected K values the 

transfer functions for equations (5), (6) & 

(7) for a sinusoidal input must be calculated. 

 

Assume a sinusoidal input of “2 sin (3t)” 

where the frequency of vibration is in units 

of rad/sec. 

The Laplace transform for the sinusoidal 

input is “6/ S2 + 9”. [3] 

 

Transfer functions for equations (5), (6) & 

(7) for a sinusoidal input of “2 sin (3t)” are 

as shown in equations (8), (9) & (10). 
 

 

 

 
To get the system response for transfer 

functions shown in equations (8), (9) & (10) 

their inverse Laplace transform must be 

calculated. MATLAB cannot be effectively 

used to find the inverse Laplace transforms 

because the numerical techniques used by it 

do not present the solutions in a usable 

format. Equation (11), (12) & (13) are the 

inverse Laplace transforms calculated for 

equations (8), (9) & (10) by manual 

calculation techniques. [5] 
 

f(t) = 0.26  e-0.34t – 0.14  e-0.86t + 0.083 
sin (3t) – 0.12 cos (3t)     (11) 
 
f(t) = e-2.25t (-0.38 sin 0.43t + 0.15 cos 
0.43t) + 1.9 sin 3t  - 0.15 cos 3t     (12) 
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f(t) = 0.37 e-2.5t –  0.3 e-2.25t +1.95 sin 
(3t) – 0.07 cos (3t)      (13) 
 
Further simplification of equations (11), (12) & 

(13) result in equations (14), (15) & (16). 

 

f(t) = 0.26  e-0.34t – 0.14  e-0.86t + 0.15 
sin (3t – 0.6)      (14) 
 
f(t) = 0.17 e-2.25t sin (0.43t – 1.19) + 
1.9 sin (3t – 1.49)      (15) 
 
f(t) = 0.37 e-2.5t –  0.3 e-2.25t + 1.95 sin 
(3t – 1.53)       (16) 
 
Reviews of equations (14), (15) & (16) show 

that equation (15) indicates a different type 

of system characteristic compared to 

equations (14) and (16). Equation (15) 

shows that for values of K between  0.0718 

& 14 the system behaves differently 

compared to outside of this range. Figures 

11 through 13 illustrate this point 

graphically. These results show that the 

root-locus technique is able to identify the 

segments of the system that behave 

differently from a mathematical point of 

view. However, a comparison of figures 12 

and 13 also demonstrate that from a 

practical point of view there may not be a 

difference between systems that 

mathematically appear different. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Response of system of equation 

(5) to a sinusoidal input. This plot represents  

                      equation (14) 

 



 
Figure 12: Response of system of equation 

(6) to a sinusoidal input. This plot represents  

                    equation (15) 

 
Figure 13: Response of system of equation 

(7) to a sinusoidal input. This plot represents 

                    equation (16) 

 

Summary & Conclusion 

In this article MATLAB was used to 

generate a Root-Locus plot for a closed loop 

control system that was represented by its 

block diagram in Laplace domain. The 

primary purpose of a Root-Locus plot is 

stability analysis of a control system. All the 

portions of a Root-Locus plot that are to the 

left of the imaginary axis represent the 

stable portion of the system and the plot 

portions to the right of the imaginary axis 

represent the unstable portion of the system. 

For the example presented in this article the 

system was completely stable. 

In addition to stability analysis, a Root-

Locus plot can be used to determine the 

critical areas where the control system 

behavior changes significantly. These areas 

can be determined by calculating the 

parameters where the plot crosses the real 

axis. In the example presented in this article, 

the plot crossed the real axis at two 

locations, and the constant values where the 

plot crossed the real axis were shown to be 

the boundaries where the system behavior 

changed mathematically and physically. 

Once the parameters for a stable control 

system are determined, the control system 

must be analyzed for standard inputs. 

Among standard inputs are impulse, step 

function and sinusoidal inputs. 

In this article MATLAB was used to 

determine the control system response for an 

impulse input and a step input. Additionally, 

it was shown that the MATLAB output is 

not usable for a sinusoidal input. Classical 

techniques were used to determine the 

output for a sinusoidal input. Comparisons 

of the results obtained by classical 

techniques for the regions identified by the 

Root-Locus plot were made. The results 

obtained by the classical techniques 

confirmed that the Root-Locus plot does 

indeed identify boundaries where the system 

performance changes.  
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