PLUS / MINUS GRADING

Sandi Connelly
Michael Long

J. Fernando Naveda
Joseph Voelkel
Agenda

• Three implementation strategies
 • Reports on findings
 1. Agent-based simulation
 2. Dual-grading
 3. History-based grading

• Summary findings

• Questions
Strategy 1 (Agent-based simulation)

- (Started Summer 2012) led by Dr. Michael Long, implemented by an advanced student
- To aid in the assessment of the impact of the RGS on student GPAs
- Model uses existing GPA data to simulate student / faculty behavior under a number of varying assumptions
 - From actual GPAs of graduating undergraduate students, creates a large student body
 - Creates a transcript with classes & letter grades for each student based on their GPA, creating different transcript for each student
 - Convert the class letter grades to percentages ranging from 60% to 100%
 - Recreate transcript that includes +/- grades
- Calculate new GPA and compare it to the old
Agent-based simulation

• **Key concerns considered**
 - Significant change in undergraduate GPAs
 - Fewer students earning 4.0 GPA
 - Seen as a competitive advantage for professional schools
 - Masters students (graduate students) earning < 3.0 GPA
 - Required for program progression
 - Freshmen students earning < 2.0 GPA
 - Required for some for program progression and financial aid
Students Losing Perfect 4.0

- Most students will see little impact
- Fewer students will be able to achieve perfect 4.0 (~ ≥50%)
- Students losing perfect 4.0, would be
 - Undergraduate
 - Of 4,644 graduating seniors* over 2 years, 67 earned 4.0 (1.4%)
 - Graduate (MS)
- Depends on
 - Number of faculty using +/- Grading System
 - Cut-off value for A-
 - Student effort to achieve above cut-off

*(Modeled 5 X 4644 students)
MS Students* Attaining < 3.0

- Small increase of # students not able to achieve ≥3.0
- Students affected by attaining less than a 3.0, could be
 - Graduate Students (MS): 1.2 to 2.9% of graduating students

- Depends on
 - Number of faculty using +/- Grading System
 - Cut-off value used for A-
 - Cut-off value used for C-
 - Student effort to achieve above cut-off

*(Modeled 15 X 1718 students)
First Year UG Students* Attaining < 2.0

- Small increase of # students not able to achieve ≥2.0
- Students affected by attaining less than a 2.0, could be
 - Freshman: 1% to 8% increase in students not obtaining a 2.0 or better, this would be ~3 to ~21 students of which ~60% would not return (~2 to ~13)

- Depends on
 - Number of faculty using +/- Grading System
 - Cut-off values used for A- and C-
 - Student effort to achieve above cut-off

*(Modeled 5 X 4417 students)
Strategy 2: Dual grading

- **Fall 2012** – Randomly selected faculty invited to participate
 - (actual) whole-letter grades
 - (hypothetical) refined-letter grades
- **Mid November 2012**, whole-letter and refined-letter grades submitted for analysis
- Experiment *did not* affect student grades. RIT’s official grading system is still the same
- Joe Voelkel analyzed data
Strategy 3 (History-based grading)

- **Faculty Recruits / Volunteers**
 - Faculty who volunteered for Dual Grading were invited to also submit historic grades
 - Submitted whole-letter and refined-letter grades from previously taught courses (i.e., Spring 2012)
 - Joe Voelkel (KGCOE) analyzed data

- **Dual-system (2) and History-based (3) strategies**
 - Both sets of data were combined for the analysis
Strategies 2 & 3: Preliminary Notes

• One of Provost’s principles
 • “The implementation [to the refined grading system] shall have minimal impact on [1] retention, [2] student’s ability to retain financial aid, and [3] student’s progress towards degree completion.”

• Caveats of Strategies 2 & 3
 • Even if a random sample of faculty could be achieved…
 • Each of [1,2,3] above is based on individual students. The sampling is based on samples of classes. (No individual-student grading info.) Principles cannot be directly addressed.
 • Students trying to maximize GPA may now be adopting strategies under the whole-grading system, not the refined-grading system.
 • Faculty in the sample may be more lenient (78%: C or B?) under the current actual system than under the proposed hypothetical system (78%: B or B–?)
- Random sample, but not balanced response
- E.g., 2 of 3 largest colleges are under-represented

<table>
<thead>
<tr>
<th>CollegeN</th>
<th>College</th>
<th>NFaculty</th>
<th>NSampled</th>
<th>CollegeN</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>b</td>
<td></td>
<td></td>
<td>b</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SCB</td>
<td>76</td>
<td>15</td>
<td>01-SCB</td>
<td>5</td>
<td>33</td>
</tr>
<tr>
<td>3</td>
<td>KGCOE</td>
<td>112</td>
<td>22</td>
<td>03-KGCOE</td>
<td>11</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>CLA</td>
<td>286</td>
<td>57</td>
<td>05-CLA</td>
<td>11</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>CAST</td>
<td>114</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>CHST</td>
<td>24</td>
<td>5</td>
<td>06-CAST&CHST</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>NTID</td>
<td>145</td>
<td>29</td>
<td>08-NTID</td>
<td>10</td>
<td>34</td>
</tr>
<tr>
<td>10</td>
<td>CHST</td>
<td>24</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>COS</td>
<td>126</td>
<td>25</td>
<td>10-COS&CHST</td>
<td>11</td>
<td>37</td>
</tr>
<tr>
<td>20</td>
<td>CIAS</td>
<td>152</td>
<td>30</td>
<td>20-CIAS</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>30</td>
<td>INTSD</td>
<td>29</td>
<td>6</td>
<td>30-INTSD</td>
<td>2</td>
<td>33</td>
</tr>
<tr>
<td>40</td>
<td>GCCIS</td>
<td>118</td>
<td>24</td>
<td>40-GCCIS</td>
<td>6</td>
<td>25</td>
</tr>
<tr>
<td>50</td>
<td>GIS</td>
<td>6</td>
<td>1</td>
<td>50-GIS</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>1212</td>
<td>242</td>
<td></td>
<td>65</td>
<td>27</td>
</tr>
</tbody>
</table>
% Distribution of Whole vs. Refined Grades

<table>
<thead>
<tr>
<th></th>
<th>Whole</th>
<th>Refined</th>
<th>A</th>
<th>A-</th>
<th>B+</th>
<th>B</th>
<th>B-</th>
<th>C+</th>
<th>C</th>
<th>C-</th>
<th>D</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>A-</td>
<td>68</td>
<td>0</td>
</tr>
<tr>
<td>B+</td>
<td>2</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>37</td>
<td>0</td>
</tr>
<tr>
<td>B-</td>
<td>0</td>
<td>36</td>
<td>0</td>
</tr>
<tr>
<td>C+</td>
<td>0</td>
<td>1</td>
<td>34</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>38</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C-</td>
<td>0</td>
<td>0</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>98</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sum (%)</td>
<td>100</td>
</tr>
<tr>
<td>Sum (N)</td>
<td>1687</td>
<td>2187</td>
<td>1208</td>
<td>390</td>
<td>148</td>
<td>5620</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results
- Reduction in many A grades
- Spread in B, C grades
- Occasional surprises in C, D grades
Summary Findings

• **Strategy 1**
 - Worst case impact on highest undergraduate GPA’s
 - Effect on other grade ranges will be dependent on a variety of factors, primarily faculty use of RGS

• **Strategy 2 & 3**
 - Faculty participation low (27% of selected) – this strategy is still a simulation
 - Data shows similar trends as Strategy 1

• **Overall**
 - No survey or simulation will consider every variable
 - Findings in these strategies in-line with those published in the literature after implementation of +/- grading
Questions?

The original taskforce

<table>
<thead>
<tr>
<th>Name</th>
<th>Department</th>
<th>Title</th>
<th>College</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandra Connelly</td>
<td>COS</td>
<td>Risa Robinson</td>
<td>KGCOE</td>
</tr>
<tr>
<td>James Heliotis</td>
<td>GCCIS</td>
<td>Sean Rommel</td>
<td>KGCOE</td>
</tr>
<tr>
<td>Joseph Hornak</td>
<td>COS</td>
<td>Danielle Smith</td>
<td>COLA</td>
</tr>
<tr>
<td>Alan Kaminski</td>
<td>GCCIS</td>
<td>Robert Stevens</td>
<td>KGCOE</td>
</tr>
<tr>
<td>Joe Loffredo</td>
<td>Registrar</td>
<td>Wiatt Strong</td>
<td>Student Gov</td>
</tr>
<tr>
<td>Michael Long</td>
<td>COS</td>
<td>Linda Undehill</td>
<td>CAST</td>
</tr>
<tr>
<td>Aaron McGowan</td>
<td>COS</td>
<td>Joseph Voelkel</td>
<td>KGCOE</td>
</tr>
<tr>
<td>Fernando Naveda</td>
<td>A. Affairs</td>
<td>Katrina Rex</td>
<td>A. Affairs (support)</td>
</tr>
</tbody>
</table>