American-German Partnership to Advance Biomedical and Energy Applications of Nanocarbon

Michael G. Schrlau, Ph.D.
Assistant Professor
Department of Mechanical Engineering
Rochester Institute of Technology
Rochester, NY, USA

Global Conversations
November 12, 2013
RESEARCH THRUSTS

- **Cell Nanosurgery** – repair, modification, metrology

- **Nano-Bio Metrology** – sensing, therapeutics, platforms

- **Nanofluidics** – behavior, transport, interfaces

- **Nanomanufacturing** – nanomaterials, nanostructured devices

FACILITIES

- 1,000 sqft. wet chemistry / characterization laboratory
- Fluorescence microscopes, SEM, nanomanipulators/injectors
- Capillary pulling, high temp tube furnace, chemical etching
- Nanofluidic characterization setup

Michael G. Schrlau, Ph.D.
Mechanical Engineering
mgseme@rit.edu
Presser Group
Explore. Create. Apply.

- Carbon nanomaterials
- Advanced ceramics
- Electrochemical energy storage
- Capacitive deionization
- Gas storage
- Electrospinning
Goal

Solve current challenges in energy and biomedicine through international partnership.

Approach

Investigate fluid transport in carbon nanotubes for biomedical and energy applications.

Project Aims

• Synthesize carbon nanotubes using template-based approaches
• Characterize the structure and morphology of these nanotubes
• Measure fluid flow through the nanotubes
RESULTS

AAO Membrane → Deposit Carbon by CVD → Etch Away Template → Pores → CNTs

500 nm
RESULTS

Conducted Parametric Study of CNT Synthesis Conditions (@ RIT):

- Reaction Time
- Temperature
- Gas Flow

Plotted Wall Thickness and Mass Deposited vs. Parameter

TEM and SEM Micrographs of the Samples Synthesized at Various Temperatures

Conducted Raman Spectroscopy of CNTs (@ INM):

- No changes in morphology

Normalized Raman Intensity

Raman shift (1/cm)

D peak
G peak
Just high background
Overtones
Project Outcomes

- CNT wall thickness: increases proportionally with time and temperature; increases proportionally with flow rate but peaks and then decreases.
- CNT morphology does not change in the range of parameters tested.
- 1 manuscript in preparation for peer-reviewed journal
- Partially supported 1 RIT PhD student

Future Work

- Measure flow through CNTs
- Explore new carbon-based nanostructures
- Identify and apply for external funding supporting international collaborations.
- Establish a “research abroad” mechanism between RIT and INM for graduate and undergraduate students.