Near-infrared (NIR) Single Photon Counting Detectors (SPADs)

Chong Hu, Minggou Liu, Joe C. Campbell & Archie Holmes

ECE Department
University of Virginia
Outline

✓ Introduction to Single Photon Counting Detectors (SPADs)

✓ Current States of near-infrared SPADs

✓ Summary and Future Goals
PMT
- High gain
- Low dark current
- Low noise
- Low quantum efficiency
- Large, bulky
- Expensive
- High voltage
- Fragile
- Ambient light catastrophic

APD
- Electron & Hole avalanche multiplication
- Good efficiency
- Acceptable dark counts
- Afterpulsing

Superconductors
- Hotspot Generation and Resistive Barrier
- High efficiency
- Low dark counts
- No afterpulsing
- $T < 1K!!$
Geiger mode - APD functions as a switch

Analog
- Responsivity
- Dark current

Digital
- Single photon detection efficiency
- Probability of dark count

Concept of excess noise does not apply!

Geiger-mode operation

Single photon input

APD output

Digital comparator output

Successful single photon detection

Photon absorbed but insufficient gain – missed count

Dark count – from dark current
Performance Parameters

✓ Photon detection efficiency (PDE)
 ➢ The probability that a single incident photon initiates a current pulse that registers in a digital counter

✓ Dark count Rate (DCR)/Probability (DCP)
 ➢ The probability that a count is triggered by dark current instead of incident photons

Diagram:
- Single photon input
- APD output
- Digital comparator output
 - Successful single photon detection
 - Photon absorbed but insufficient gain – missed count
 - Dark count – from dark current
Photon Detection Efficiency

$$\eta_{PDE} = \eta_{\text{external}} \times \eta_{\text{collection}} \times P_{\text{avalanche}}$$

Graph:
- Breakdown Probability vs. $\Delta V/V_{br}$
- InP: 1110 nm
- Breakdown Probability values: 0.0, 0.1, 0.2, 0.3

Diagram:
- p-contact metallization
- SiN$_x$ passivation
- p^+-InP diffused region
- i-InP cap
- multiplication region
- n-InP charge
- n-InGaAsP grading
- i-InGaAs or i-InGaAsP absorption
- n$^+$-InP buffer
- n$^+$-InP substrate
- anti-reflection coating
- n-contact metallization
- Optical input

Materials and Wavelengths:
- InGaAsP: 1.06, 1.3 μm
- InGaAs: 1.55 μm
40µm-diameter In$_{0.53}$Ga$_{0.47}$As/InP

- **0.18nA** at 95% of V_{br} at 297K
- **0.15pA** at 95% of V_{br} at 200K

Good enough?
1.06 μm SPADs: DCR vs. PDE

✓ InGaAsP absorber lower generation-recombination dark current
✓ DCR approaching Si SPAD DCR with greatly increased PDE
 ➢ Si SPADs have PDE < 2% at 1.06 μm
Dark Count Probability versus Photon Detection Efficiency

InGaAs/InP, 300K 1550 nm (2007)
Quenching Techniques

Quenching circuit
- Quench avalanche current
- Reset the device

• Passive Quenching
 - Quenched by discharging capacitance
 - Slow recharge

• Active Quenching
 - Raise the anode voltage
 - Quick recharge

• Gated Quenching
Afterpulsing

Number of trapped carriers

Initial avalanche

Released carriers from traps

![Graph showing dark count rate over hold-off time with different bias temperatures (220K, 200K, 175K, 150K) and 6 V overbias. The graph illustrates the decrease in dark count rate with increasing hold-off time.]
Reduction of Afterpulsing: Decreasing Charge Flow

The total charges flowing through device:
\[Q = (C_s + C_d)V_{ex} \]

- \(C_d \): device capacitance
- \(C_s \): stray capacitance
Passive Quenching with Active Reset (PQAR)

$V_b + V_{ex}$

$R_s = 50 \, \Omega$

10nF

10MΩ

Transistor

Amplifier

Counter

Pulse Generator

Trigger in

Output

Released carriers from traps

Conventional passive quench 100kΩ

PQAR active reset

PQAR passive quench 10MΩ

Excess voltage (V)

Carrier emission rate (a.u.)

Time (ns)
PQAR at 230K

Measured counts x 1000 (/s)

![Graph showing measured counts vs. CW laser power](image-url)

CW laser power (fW)

Photon flux (#/s)

Photon count rate (#/s)

Dark count probability (/ns)

NEP ~ 10^{-16} W/Hz^{1/2}

Voltage on device

\(V_{b} \)

\(\text{Hold-off} = 15 \mu s \)

\(\text{Compare with gated mode results} \)

\[DCR = \frac{N_{d}}{1 - N_{d} \cdot \tau_{\text{hold-off}}} = R_{d} \cdot P_{b} \]

\[\text{TotalCR} = \frac{N_{t}}{1 - N_{t} \cdot \tau_{\text{hold-off}}} = (R_{d} + \Psi \cdot QE) \cdot P_{b} \]

\[PCR = \text{TotalCR} - DCR = \Psi \cdot PDE \]
Gated Quenching of a SPAD

Total bias on APD

AC pulse width

Excess bias (V_{ex})

V_{br}

V_{dc}

Laser pulse

Avalanche pulse due to incident photon

Avalanche pulse due to dark carriers (false positive)

Missed photon (false negative)

Photon Detection Efficiency

Dark Count Rate
Gated-PQAR

Compared to PQAR

• Suppressed dark counts by gated bias
• Reduced complexity
• Array operation: recharge together, quench separately

The transistor can be HBT monolithically integrated on the SPAD, and the its gate/base input can be shared over the whole array.
Gated Quenching and Gated PQAR
Gated Quenching and Gated PQAR

![Graph showing the relationship between dark count probability and repetition rate for different temperatures and Vex values.](image)

- Dark Count Probability
- Repetition Rate (MHz)
- 220K, Vex = 5.6%
- 200K, Vex = 6.0%
- 180K, Vex = 6.2%

Gated-quenching

Gated-PQAR
Conclusions

✔ Performance of Geiger-mode APDs is improving rapidly
 ➢ Acceptable detection efficiencies and dark count probability levels
 ➢ Getting a better control over the afterpulsing problem
Future Goals

✓ Move closer to quantum limited detection
 ➢ Dark Current $\rightarrow 0$
 ➢ Quantum Efficiency $\rightarrow 100$
 ➢ Read Noise $\rightarrow 0$

✓ Move to longer wavelengths

✓ Do photon number resolving
High QE Structure

GaAsSb resonant-cavity enhanced avalanche photodiode operating at 1.06 μm

R. Sidhu, H. Chen, N. Duan, G.V. Karve, J.C. Campbell and A.L. Holmes, Jr.

A resonant-cavity enhanced, separate absorption, charge, and multiplication avalanche photodiode using GaAs$_{0.8}$Sb$_{0.2}$ quantum wells on GaAs has been demonstrated. The device exhibited high gain and <1 nA dark current at 90% of breakdown. Peak quantum efficiency of 93% and full-width at half-maximum of 7 nm were observed at 1.064 μm.

Fig. 2 Photo-current, dark-current and DC avalanche gain against reverse bias, for 160 μm diameter mesa device

Fig. 3 Measured responsivity against wavelength for device with no top mirrors (circles), one pair of top dielectric mirrors (triangles) and two pairs of top dielectric mirrors (squares)
Type-II Quantum Wells (QWs)

Formed between materials with staggered band line-ups

- Electrons and holes are confined in adjoining layers
- Spatially indirect absorption and emission
 - Smaller effective bandgap for long-wavelength operation

\[\text{GaAs}_{0.5}\text{Sb}_{0.5} \]

\[\text{Ga}_0.47\text{In}_{0.53}\text{As} \]

\[\Delta E_c = 0.236 \text{eV} \]

\[\Delta E_v = 0.247 \text{eV} \]

\[0.49 \text{eV} \approx 2.5 \mu\text{m} \]
Where we are now (pin devices)

-2 V bias (200K)

-2 V bias (RT)
Gated-PQAR for Synchronized Detection

Gated Quench

Compared to gated quench
- Comparable circuit complexity
- Wider AC pulses: easier to generate and synchronize
- Uniform output pulse shape, good for photon-number-resolution with multiplexing

AC

output

Gated-PQAR

Transistor on: low resistance for fast reset
Transistor off: high resistance for fast passive quench

\[V_{\text{bias}} \]

\[V_{\text{gate}} \]

\[V_{\text{diode}} \]

output
Questions??
Simulated Breakdown Probabilities

J. P. R. David, University of Sheffield

Breakdown Probability

$\Delta V/V_{br}$

Decreasing thickness:
0.2 μm, 0.5 μm, 1.0 μm
• 20 x 20 Array – 98% yield

• 4 x 4 Subarray – uniform single-photon response
Afterpulsing Probability vs. Total Charge

AC pulse

Laser pulse

Delay 1µs

Period

Afterpulsing probability vs. Total charge (pC)

- Duration
- Magnitude

0 20 40 60 80 100

0 0.2 0.4 0.6 0.8 1

Total charge (pC)
Total Charge Flow

- **Gated-Quench with 2 ns Gates**
- **PQAR with 0.23 pF of total capacitance**

36x reduction

- **Total Charge (pC)**
- **Excess Bias (V)**
- **Normalized Afterpulsing Probability**
Effective excess noise factor $\equiv 1 + \frac{\sigma^2(\text{peak signal})}{<\text{peak signal}>^2}$

$= 1 + \left(\frac{11.6mV}{572mV}\right)^2 = 1.0004$
Pixel Level Monolithic Integration of Active Switching Elements

- Reduced parasitics
- Faster quenching
- Reduced afterpulsing
- Increased transmission and sampling rates
- Packaging advantages