Malware RSS Feed

Results of PoC Publishing

Malware Alerts - Wed, 05/11/2016 - 07:01

Dreams of a Threat Actor

There are two crucial features of the Android OS protection system:

  1. it is impossible to download a file without user’s knowledge on a clean device;
  2. it is impossible to initialize installation of a third-party app without user’s knowledge on a clean device.

These approaches greatly complicate malware writers’ lives: to infect a mobile device, they have to resort to ruses of social engineering. The victim is literally tricked into force-installing a Trojan. This is definitely not always possible, as users become more aware, and it is not that easy to trick them.

Invisible installation of a malware app onto a mobile device without a user’s knowledge is definitely a daydream of many a malware writer. To do that, it is necessary to find and exploit an Android system vulnerability. These vulnerabilities have been found: we are talking about CVE-2012-6636, CVE-2013-4710, and CVE-2014-1939.

These vulnerabilities allow to execute any code on a device by means of a custom-made HTML page with a JavaScript code. The vulnerabilities have been closed, starting with Android 4.1.2.

It would be great to say that everything is fine now, but, alas, that is not so. We should not forget about the third feature of the Android OS: a device manufacturer is responsible for creating and deploying updates for its specific device model.

Updating the Android operating system is decentralized: each company uses its own custom version of Android, compiled with its own compilers and supplied with its own optimization and drivers. Regardless of who has found a vulnerability and whether that person has informed the OS developer about it, releasing updates is a prerogative of each manufacturer. Only manufacturers are capable of helping the users.

Nevertheless, updates are released somewhat periodically but mostly for the leading models: not all of the manufacturers actively support all of their models.

A publically available detailed description of vulnerabilities for the Android OS provides malware writers with all of the required knowledge. Incidentally, a potential victim of the vulnerability exploits can remain such for a long period of time: let us call it “an endless 0-day”. The problem can be solved only by buying a new device.

This, in particular, coupled with publically available descriptions of the vulnerabilities and examples of the vulnerabilities being exploited, incited malware writers into developing an exploit and performing drive-by attacks onto mobile devices.

Web Site Infection

Drive-by attacks on computers of unsuspecting users give a large audience to threat actors (if they manage to post a malicious code on popular web sites) as well as invisibility (inasmuch as users do not suspect being infected). Owners of compromised web sites may not suspect being infected for a long time as well.

The method of code placement and other attack features allow one to distinguish web sites infected with the same “infection”. For quite long, we observed a typical infection within a group of minimum several dozens of Russian web sites of different types and attendances, including quite well-known and popular resources (for example, web sites with a daily turn-out of 25,000 and 115,000 users). Web-site infection from this group is characterized by the usage of the same intermediate domains, the similarity of the malicious code placed onto them, the method of code placement (in most cases, it is placed on the same domain as an individual JavaScript file), as well as speed and synchronicity of changes in the code on all of the infected web sites after the malicious code has been detected.

The attack method has been standard (even though it has gone through some changes), and it has been used at least since 2014. It has been standard also owing to its targeting Windows OS users. However, some time ago, after threat actors performed a regular modification of the code on infected web sites, we discovered a new script instead of a “common” one that uploads flash exploits. It checked for the “Android 4” setting in User-Agent and operated with tools uncommon for Windows. This anomaly urged us to study the functionality of the script meticulously and watch the infection more closely.

Thus, on the 22nd of January 2016, we discovered a JavaScript code that exploited an Android vulnerability. Only within 3 days, on the 25th of January 2016, we found a new modification of this script with more threatening features.

Scripts

We managed to detect two main script modifications.

Script 1: Sending SMS

The only goal of the first script is to send an SMS message to a phone number of threat actors with the word “test”. For that, the malware writers took advantage of the Android Debug Bridge (ADB) client that exists on all of the devices. The script executes a command to check for the ADB version on a device using the Android Debug Bridge Daemon (ADBD). The result of the command execution is sent to the server of the threat actors.

The code for sending an SMS is commented. In fact, it cannot be executed. However, if it is uncommented, then devices with the Android version below 4.2.2 could execute the commands given by malware writers. For newer versions of Android, the ADBD local connection (in the Loopback mode) is forbidden on the device.

Sending an SMS to a regular number does not promise big losses for the victim, but nothing prevents the malware writers from replacing the test number with a premium-rate number.

The first malicious script modification should not cause any big problems for users, even if the threat actors would be able to send an SMS to a short code. Most mobile carriers have the Advice-of-Charge feature, which does not apply any charges for the first SMS to a premium-rate number: one more message with a specific text must be sent. This is impossible to do from within a JavaScript code for the specific case. This is why, most likely, a second modification of the script has appeared.

Script 2: SD-Card File

The second script, in effect, is a dropper. It drops a malicious file from itself onto an SD card.

By resorting to unsophisticated instructions, part of the script body is decrypted. First of all, separators are removed from the string:

Then, the string is recorded onto an SD card into the MNAS.APK file:

The string must be executed. As a result, the created app should be installed onto the system:

However, this code is yet still commented.

Let us review the script in more detail. The script has a check for a specific Android version (it has to be 4).

Obviously, the malware writers know which versions are vulnerable, and they are not trying to run the script on Android 5 or 6.

Just like with the first script, the second has an ADB check at the control center side:

In this case, the check will not affect anything; however, the ADB version is really essential, since not all of the versions support a local connection with ADBD.

We analyzed several modifications of the second script, which allowed us to track the flow of thought of the malware writers. Apparently, their main goal was to deliver the APK file to the victim.

Thus, some earlier script modifications send data about each executed command to the control center:

In this case, the SD card is checked for the MNAS.lock file. If it is not there, then the script tries to create the MNAS.APK file with a zero size by using a touch utility.

In later script modifications, the task of the APK file delivery to the victim was solved by using the ECHO command, which allows to create any file with any content on a device:

As a result of the ECHO command execution, a malicious APK file is created on the SD card.

Trojan

The second script, in the state as we have discovered it, created and wrote a malicious file, which also needed to be executed, onto an SD card. Inasmuch as the dropper script does not contain a Trojan execution mechanism, the task has to be fulfilled by the user.

The APK file dropped from the script can be detected by Kaspersky Lab as Trojan-Spy.AndroidOS.SmsThief.ay. Since the beginning of 2016, we have managed to find four modifications of the Trojan.

Malware writers use the “example.training” name inside the Trojan code:

At the same time, the malicious file has enough privileges to carry out fully fledged attacks onto the wallet of the victim by sending SMS messages:

The first action that the malicious code does after its execution is requesting administrator rights for the device. After obtaining the rights, it will conceal itself on the application list, thus making it difficult to detect and remove it:

The Trojan will wait for incoming SMS messages. If they fall under given rules, for example, if the come from a number of one of the biggest Russian banks, then these messages will be forwarded at once to the malware writers as an SMS:

Also, the intercepted messages will be forwarded to the server of the threat actors:

Aside from the controlling server, the threat actors use a control number to communicate with the Trojan: the data exchange occurs within SMS messages.

The control number initially exists in the malicious code:

The Trojan awaits specific commands from the control center and in SMS messages from the control number.

A command to change the control number can come from the server of threat actors:

The following commands can come from a control number:

  • SEND: send an SMS to an indicated number with indicated text;
  • STOP: stop forwarding SMS messages;
  • START: start forwarding SMS messages.

For the moment, the functionality of the Trojan is limited to intercepting and sending SMS messages.

Conclusion

The task of carrying out a mass attack on mobile users is solved by infecting a popular resource that harbors a malicious code that is capable of executing any threat actors’ command on an infected mobile device. In case of the attacks described in the article, the emphasis has been placed on devices of Russian users: these devices are old and not up-to-date (notably, Russian domains have been infected).

It is unlikely that the interest of the malware writers towards drive-by attacks on mobile devices will decrease, and they will keep finding methods of carrying out these attacks.

It can be inferred that it is obvious that the attention of malware writers towards publications of research laboratories regarding the topic of Remote Code Execution vulnerabilities will increase, and the attempts to implement attacks by using mobile exploits will persist.

It is also obvious that no matter how enticing publishing is for a 0-day vulnerability, it is worth to refrain from showing detailed exploit examples (Proof of concept). Publishing the mentioned examples most likely will lead to someone creating a fully functional version of a malicious code.

There is a good news for the owners of old devices: our Kaspersky Internet Security solution is capable of protecting your device by tracking changes on the SD card in real time and removing a malicious code as soon as it is written to the SD card. Therefore, our users are protected from the threats known to Kaspersky Lab, which are delivered by the drive-by download method.

IT threat evolution in Q1 2016

Malware Alerts - Thu, 05/05/2016 - 06:57

 Download PDF version

Q1 figures
  • According to KSN data, Kaspersky Lab solutions detected and repelled 228,420,754 malicious attacks from online resources located in 195 countries all over the world.
  • 74,001,808 unique URLs were recognized as malicious by web antivirus components.
  • Kaspersky Lab’s web antivirus detected 18,610,281 unique malicious objects: scripts, exploits, executable files, etc.
  • There were 459,970 registered notifications about attempted malware infections that aim to steal money via online access to bank accounts.
  • Crypto ransomware attacks were blocked on 372,602 computers of unique users.
  • Kaspersky Lab’s file antivirus detected a total of 174,547,611 unique malicious and potentially unwanted objects.
  • Kaspersky Lab mobile security products detected:
    • 2,045,323 malicious installation packages;
    • 4,146 mobile banker Trojans;
    • 2,896 mobile ransomware Trojans.
Overview

2016 has only just got underway, but the first three months have already seen the same amount of cybersecurity events that just a few years ago would have seemed normal for a whole year. The main underlying trends remained the same, while there was significant growth in trends related to traditional cybercrime, especially mobile threats and global ransomware epidemics.

Ransomware became the main theme of the quarter after knocking targeted attacks from the top of the most popular threat rating. Unfortunately, this is a situation that will continue to evolve, and those behind the extortion could well end up being named “problem of the year”.

Targeted attacks BlackEnergy2/3

The BlackEnergy cyberattack on the Ukrainian energy sector was the most high-profile incident. Although it occurred at the end of last year, a fuller picture of what happened only appeared in the course of the subsequent analysis. Moreover, attempts by cybercriminals to arrange new attacks continued in 2016.

The attack was unique because of the damage it caused – the hackers managed to disable the power distribution system in Western Ukraine, launch the Wiper program on the targeted systems and carry out a telephone DDoS on the technical support services of the affected companies.

There were numerous publications about the attack, and Kaspersky Lab’s experts revealed several aspects of the activities of the group responsible. In particular, they published an analysis of the tool used to penetrate the systems – a malicious DOC file.

For those who want to learn more about the attack, we recommend the report prepared by the American SANS Institute and ICS-CERT.

Poseidon

In February, the experts at Kaspersky Lab revealed details about the activities of Poseidon – the first Portuguese-speaking targeted attack group which had set up a custom-tailored malware boutique.

Although the report was only released in 2016, the group has been operational for a long time. Malware campaigns that were most probably supported by Poseidon were detected as far back as 2005, while the first sample dates back to 2001. Poseidon’s arsenal is focused primarily on the Microsoft Windows operating system family: from Windows 95, which the group targeted in its early days, to Windows 8.1 and Windows Server 2012, which were targeted by the most recently detected malware samples.

The attack scenario is carefully tailored to the victim. Although the initial infection occurs according to the same scenario, the following stages of the campaign specifically customize the infection method for each new victim. That is why the specialists from the Global Research & Analysis Team (GReAT) decided to call Poseidon a “custom-tailored malware boutique”.

Having gained access to the corporate network, the criminals move across the network and collect as much data as possible in order to escalate their privileges, create a network map and to identify the computer they need. The main target of the attack is usually the local Windows domain controller. Once they have control over it, the attackers can steal intellectual property, data, trade secrets, and other valuable information.

The information collected by Poseidon for its owners was in most cases used to blackmail victim companies into contracting the Poseidon Group as a security firm. Regardless of whether a contract was signed, Poseidon remained on the network.

Hacking Team

Yet another infamous “boutique” creating cyber-espionage tools, the Italian company Hacking Team, fell victim to a cyberattack last year in which a huge database of its employee email correspondence was stolen, as well as project source codes.

The incident revealed a lot of problems in the work of the company and many thought it would be very difficult for the business to develop further. However, at the beginning of 2016 new Hacking Team implants for OSX were found. This indicates that the group has no intention of halting its work and is continuing to develop in the sphere of secondary operating systems. This means their “creations” will continue to be a problem for users who have become an object of interest for HT customers.

Yet another story related to Hacking Team was the hunt for a Microsoft Silverlight 0-day. Information about the possible presence of this vulnerability was found in the Italian company’s documents. Based on very little initial data and armed with the Yara and VirusTotal tools, our experts set a trap and waited. And sure enough, they detected a 0-day exploit.

Operation BLOCKBASTER

Kaspersky Lab was among the participants in operation Blockbaster, a joint investigation conducted by several major IT security companies. The subject of the investigation was activity by the Lazarus Group, a cybercriminal gang of supposedly North Korean origin that was involved in the attack on Sony Pictures in 2014.

The Lazarus Group has been around since 2009, but their activities moved up a gear from 2011. The group is responsible for such well-known attacks as Troy, Dark Seoul (Wiper), WildPositron. During the investigation over 40 different types of malicious program, which they had created over the years, were detected. In particular, the group used their malware to attack companies, financial institutions, radio and television. Use of exploits for 0-day vulnerabilities was also recorded.

Hospitals under attack

This section on targeted attacks should also include Sergei Lozhkin’s research on how hackers can penetrate the internal network of hospitals and gain full access to patient data using publicly available tools and services.

Unfortunately, medical institutions are being targeted more and more by such attacks. In the first quarter of 2016, there were several incidents of hospital networks being infected with various types of Trojan ransomware that encrypts data and demands a ransom to decrypt it.

The latest incident was an attack on the MedStar network that affected 10 hospitals. According to the network’s official report, the data was saved without paying a ransom to the blackmailers, while another hospital in California ended up paying $17,000 for a ransomware crypto key.

Cybercrime Adwind

At the Security Analyst Summit 2016 (SAS 2016) our GReAT experts presented the results of their investigation into the Trojan known as Adwind RAT (Remote Access Tool). Having studied the activity of the malware, the researchers came to the conclusion that even the story behind the Trojan’s creation was out of the ordinary.

The Trojan was developed continuously over several years, with the first samples appearing in 2012. It has had different names at different times: in 2012, the creators were selling it as Frutas; in 2013 it was called Adwind; in 2014 the Trojan was known as Unrecom and AlienSpy; and in 2015 it was named JSocket.

The GReAT experts believe that Adwind and all its incarnations have been developed by one hard-working hacker who has been releasing new features and modules for four years.

The Adwind platform was initially only available in Spanish, but an English-language interface was added later, allowing cybercriminals worldwide to evaluate it. The main users of this Trojan are those conducting advanced cyber fraud, unscrupulous competitors, as well as so-called Internet mercenaries who are paid for spying on people and organizations online. Adwind can also be used by anyone wishing to spy on their friends.

Geographically, the biggest concentration of victims has also changed over the last four years. In 2013, the targets were mostly in Spanish- and Arabic-speaking countries. The following year, cybercriminals focused on Turkey and India, as well as the United Arab Emirates, the United States and Vietnam. In 2015, Russia topped the rating with the United Arab Emirates, Turkey, the United States and Germany close behind.

Fortunately, our investigation was not in vain – a few days after its publication, the JSocket website stopped working and the Adwind author ceased their activity. Since then, no new versions of the Trojan have appeared. Perhaps we can expect another reincarnation of the Trojan, or maybe this is the end of the story.

Banking threats

At the Security Analyst Summit (SAS in 2016), Kaspersky Lab announced the discovery of two new gangs engaged in APT-style bank robberies – Metel and GCMAN – and the reemergence of the Carbanak group with new targets in its sights.

In 2015, Kaspersky Lab researchers conducted incident response investigations for 29 organizations located in Russia that were infected by these three groups.

There are other cybercriminal groups currently attacking banks in Russia, but these three are the most active and are involved in the most high-profile thefts from both customer bank accounts and the banks themselves.

The activity of Carbanak 2.0 is of particular interest. In December 2015, Kaspersky Lab confirmed that the group was still active after discovering signs of Carbanak in a telecommunications company and a financial organization. An interesting feature of the Carbanak 2.0 group is that they have a different type of victim. The group has moved beyond banks and is now targeting the budgeting and accounting departments of any organization that interests them, using the same APT-style tools and techniques.

In one remarkable case, the Carbanak 2.0 gang used its access to a financial institution that stored information about shareholders to change the ownership details of a major company. The information was modified to name a money mule as a shareholder of the company, displaying their IDs.

FakeCERT

Yet another criminal gang known as Buhtrap came to the fore in the first quarter. It is responsible not only for the theft of hundreds of millions of rubles from Russian banks but also for organizing a targeted attack on banks using the names and attributes of FinCERT, a special department of the Central Bank of Russia created to detect cyberattacks and notify member banks. It was the first time that attackers had used the FinCert “brand” and the attack was carefully prepared; a corresponding domain name was created and the identifiers used by FinCERT were studied closely.

The malicious mass mailing affected hundreds of banks in Russia. The attackers have a database of their employee email addresses, including names and surnames. A legitimate remote administration tool was used as the remote access module installed in the system.

Bangladesh

On the global arena, the most prominent attack on banks was that involving the Central Bank of Bangladesh. It was not just the object of the attack – the Central Bank – that was remarkable but also the amount of money the attackers managed to steal, plus the amount they tried to steal but failed.

The investigation is still ongoing, but according to the information that has been made public, it is possible to put together a picture of what happened. Back in early February, hackers managed to access the workstations of several employees at the national bank. Using their identities, the fraudsters began to send out transfer orders for money held in different banks including the New York Federal Reserve Bank. With full access and posing as employees, they were able to steal approximately $80 million. The money was transferred to accounts in the Philippines and then passed through a money-laundering scheme involving local casinos and forex brokers.

Another $20 million would have been transferred to Sri Lanka, but the hackers made an error in the name of a recipient organization; this aroused the suspicion of Deutsche Bank, which was the correspondent bank of the Central Bank of Bangladesh. An investigation found that the payment order had been initiated by hackers, and approximately $900 million was still waiting to be transferred.

It’s worth noting that Bangladesh’s Minister of Finance only learned about the incident a month later from the mass media. The head of the Central Bank was forced to resign, the investigators are currently trying to trace those responsible, and the bank is taking measures to return at least some of the stolen funds.

Ransomware Trojans

As we mentioned above, ransomware Trojans were the main theme of the quarter and could well become the main problem of the year.

Making the situation worse is the fact that a number of ransomware Trojans have become accessible to anyone with a little bit of cyber know-how in the form of source code. As a consequence, even the average script-kiddy can deploy their own version of the Trojan which, together with the active use of Bitcoin for paying ransoms, makes it much easier to organize attacks with impunity.

Moreover, the term Ransomware-as-a-Service (RaaS) has already come into use. This involves the attackers offering to pay for Trojan distribution, promising a cut of any ransom money received. The clients of these services are usually webmasters of porn sites. There are services that work the other way round, offering a complete set of tools to the encryptor who takes responsibility for distributing the Trojan and takes 10% of the ransom as commission.

According to reports from several companies, the first quarter of 2016 saw incidents where ransomware was used by a number of well-known APT-groups, mainly Chinese. We also identified similar cases, and not only involving Chinese groups. If these incidents become a trend, the threat will move to a new level because the damage caused by ransomware is not much different from that caused by Wiper-type Trojans. In both cases, user data becomes inaccessible.

In addition, ransomware Trojans are expanding their sphere of activity; in Q1 2016, CTB-Locker targeted web servers.

The earlier version of CTB-Locker known as crypto-ransomware Onion differed from other ransomware in that it used the anonymous network Tor to protect its command servers from being disabled because, as a rule, it is only possible to disable static servers. The use of Tor also helped the malware avoid detection and blocking. There was one more thing that protected CTB-Locker operators: payment was only accepted in Bitcoins, a decentralized anonymous cryptocurrency.

The new version of this malicious program encrypts web servers, and demands less than half a Bitcoin (~ $150) as ransom. If the money is not paid on time, the ransom is doubled to about $300. Once the ransom is paid, a key is generated to decrypt the web server files.

However, the biggest crypto epidemic of Q1 2016 was caused by the ransomware Trojan Locky (detected by Kaspersky Lab products as Trojan-Ransom.Win32.Locky).

This Trojan is continuing to spread; Kaspersky Lab products have recorded attempts to infect users in 114 countries around the world.

In order to spread the Trojan, the cybercriminals use mass mailings in which malicious loaders are attached to spam messages. Initially, the malicious spam messages contained a DOC file attachment with a macro that downloaded the Locky Trojan from a remote server and executed it.

At the time of writing, the malicious spam is still being sent, but instead of DOC files being attached there are now ZIP archives containing one or more obfuscated scripts in JavaScript. The messages are mostly in English, though some bilingual variants have appeared.

The most significant technical innovation in ransomware was full disk encryption (more specifically, encryption of the file system table) rather than file encryption. This trick was used by the Petya Trojan (the fact that it has a Russian name does not necessarily mean that it was created by Russian-language malware writers).

After encrypting the main file table, Petya shows its true face – a skull and crossbones composed of ASCII characters. Then the typical encryptor routine begins: the Trojan demands a ransom from the victim, 0.9 Bitcoin (about $380) in this case.

At this stage, the only thing that distinguishes Petya from other ransomware is the fact that it operates without an Internet connection. This is hardly surprising though, because Petya basically “eats” the operating system, including its ability to connect to the Internet. This means the user has to go to another computer to pay the ransom and recover their data.

In March, yet another encryptor for Mac OS X was discovered – Trojan-Ransom.OSX.KeRanger. The attackers used it to infect two BitTorrent client installers from the open source Transmission project, which were available for download on their official website. Most likely, the project site was hacked, and the files for download were substituted for malicious recompiled versions. The KeRanger Apple encryptor was signed with a valid Apple certificate, and could therefore bypass the Gatekeeper security feature.

Statistics on Trojan encryptors

Encryptors belong to the Trojan-Ransom class of malware, i.e. to ransomware. Today, in addition to encryptors this class of malicious programs also includes so-called browser ransomware. In the general flow of Trojan-Ransom detections the share of browser ransomware accounts for 25%, and that is mainly in Russia and the CIS. In this section, we will not dwell on browser ransomware, but will look at malicious encryptors in more detail.

The number of new Trojan-Ransom encryptors

The following graph represents the rise in the number of newly created encryptor modifications over the last two quarters.

Number of Trojan-Ransom encryptor modifications in Kaspersky Lab’s Virus Collection (Q4 2015 vs Q1 2016)

The overall number of encryptor modifications in our Virus Collection to date is at least 15,000. Nine new encryptor families and 2,900 new modifications were detected in Q1.

The number of users attacked by encryptors

Number of users attacked by Trojan-Ransom encryptor malware (Q1 2016)

In Q1 2016, 372,602 unique users were attacked by encryptors, which is 30% more than in the previous quarter. Approximately 17% of those attacked were in the corporate sector.

It is important to keep in mind that the real number of incidents is several times higher: the statistics reflect only the results of signature-based and heuristic detections, while in most cases Kaspersky Lab products detect encryption Trojans based on behavior recognition models and issue the Generic verdict, which does not distinguish the types of malicious software.

Top 10 countries attacked by encryptors Country* % of users attacked by encryptors** 1 Italy 3.06 2 Netherlands 1.81 3 Belgium 1.58 4 Luxembourg 1.36 5 Bulgaria 1.31 6 Croatia 1.16 7 Rwanda 1.15 8 Lebanon 1.13 9 Japan 1.11 10 Maldives 1.11

* We excluded those countries in which the number of Kaspersky Lab product users is relatively small (less than 10,000).
** Unique users whose computers have been targeted by Trojan-Ransom encryptor malware as a percentage of all unique users of Kaspersky Lab products in the country.

In Q1, the first six places in the Top 10 were occupied by European countries. Italy (3.06%) topped the rating; the most widespread encryptor family in this country was Teslacrypt (Trojan-Ransom.Win32.Bitman). Italy was followed by the Netherlands (1.81%) and Belgium (1.58%).

Top 10 most widespread encryptor families Name Verdict* Percentage of users** 1 Teslacrypt Trojan-Ransom.Win32.Bitman/Trojan-Ransom.JS.Cryptoload 58.43% 2 CTB-Locker Trojan-Ransom.Win32.Onion/Trojan-Ransom.NSIS.Onion 23.49% 3 Cryptowall / Cryptodef Trojan-Ransom.Win32.Cryptodef 3.41% 4 Cryakl Trojan-Ransom.Win32.Cryakl 3.22% 5 Scatter Trojan-Ransom.BAT.Scatter/Trojan-Downloader.JS.Scatter/Trojan-Dropper.JS.Scatter/Trojan-Ransom.Win32.Scatter 2.47% 6 Rakhni Trojan-Ransom.Win32.Rakhni/Trojan-Downloader.Win32.Rakhni 1.86% 7 Locky Trojan-Ransom.Win32.Locky 1.30% 8 Shade Trojan-Ransom.Win32.Shade 1.21% 9 iTorLock / Troli Trojan-Ransom.MSIL.Lortok 0.84% 10 Mor / Gulcrypt Trojan-Ransom.Win32.Mor 0.78%

* These statistics are based on detection verdicts received from users of Kaspersky Lab products who have consented to provide their statistical data.
** Unique users whose computers have been targeted by a specific Trojan-Ransom family as a percentage of all users of Kaspersky Lab products attacked by Trojan-Ransom malware.

First place in Q1 was occupied by the Teslacrypt family represented by two verdicts: Trojan-Ransom.Win32.Bitman and Trojan-Ransom.JS.Cryptoload. The second verdict is typical for scripts that are sent out in ZIP archives as part of spam mailings. In the past, these scripts downloaded malware such as Fareit and Cryptowall, but recently the attackers have switched to TeslaCrypt. Noticeably, in Q1 new versions of this encryptor with an improved encryption algorithm were spread this way: the authors used the “reliable” RSA-4096 instead of AES.

Second came the CTB-Locker (Trojan-Ransom.Win32 / NSIS.Onion) family. The members of this family are usually distributed via an affiliate program, and are supported in many languages. As mentioned above, in the first quarter of 2016, a new variant of the CTB-Locker that targets web servers only was discovered. It has already successfully encrypted web-root files in more than 70 servers located in 10 countries.

The Trojan-Ransom.Win32.Cryptodef family also known as Cryptowall came third. Its representatives, as in the case of Teslacrypt, are spread via spam mass mailings.

In fifth place is the Scatter family. Earlier this year, a new wave of proliferation involving this encryptor via spam mailings was registered. The emails contained a link to a JS script that was masked in order to make the user download and launch it locally. Interestingly, when the script runs, in addition to Scatter, it saves two other malicious programs to the disk: Nitol (DDoS-bot) and Pony (a Trojan designed to steal information, mostly passwords).

The Locky family, which occupied seventh place in the Q1 rating, was notable for its wide geographic spread, mainly across Europe. Located on the Tor network, the site containing the criminals’ demands supports more than two dozen languages, which doesn’t include Russian or other CIS languages. This may mean that cybercriminals are not interested in attacking victims in these countries, something that is confirmed by the KSN statistics.

Statistics

All the statistics used in this report were obtained using Kaspersky Security Network (KSN), a distributed antivirus network that works with various anti-malware protection components. The data was collected from KSN users who agreed to provide it. Millions of Kaspersky Lab product users from 213 countries and territories worldwide participate in this global exchange of information about malicious activity.

Mobile threats

Cybercriminals continue to improve new techniques for deceiving users. This quarter, we identified two mobile Trojans that counter standard security mechanisms used by operating systems. One version of Trojan-Banker.AndroidOS.Asacub overlays the regular system window requesting device administrator privileges with its own window containing buttons. The Trojan thereby conceals the fact that it is gaining elevated privileges in the system from the user, and tricks the user into approving these privileges. Another Trojan using a similar method is Trojan-SMS.AndroidOS.Tiny.aw. In recent versions of Android the system asks for the user’s approval when an SMS is sent to a premium number. The Tiny SMS Trojan overlays this dialog with its own screen without covering the buttons in the original window.

Request screen of Trojan-SMS.AndroidOS.Tiny.aw overlaying a notification about the sending of an SMS to a premium-rate number (The message states: Would you like to send a request to receive a gaming database?)

The Trojan’s request is presented in such a way that the user will most probably agree to send the SMS to a premium-rate number without having the vaguest idea of what happened next.

In the Q3 2015 report we mentioned the banking Trojan Trojan-Banker.AndroidOS.Marcher. This quarter, we were able to detect new versions of Marcher which attacked nearly 40 banking apps, mostly belonging to European banks. Unlike most other mobile Trojans, Marcher uses phishing web pages rather than its own windows to overlay banking app screens.

In Q1, we saw an increase in activity by the mobile ransomware Trojan-Ransom.AndroidOS.Fusob.pac, which blocks the user’s device and demands a ransom for decryption. In the first three months of 2016, Fusob became the most popular mobile Trojan of this type – it accounted for over 64% of users attacked by mobile ransomware. The total number of users attacked by mobile ransomware Trojans increased more than 1.8 times compared to the previous quarter.

The number of new mobile threats

In Q1 2016, Kaspersky Lab detected 2,045,323 malicious installation packages – this is 11 times greater than in Q4 2015, and 1.2 times more than in Q3 2015.

Number of detected malicious installation packages (Q2 2015 – Q1 2016)

Distribution of mobile malware by type

Distribution of new mobile malware by type, Q1 2016 vs. Q4 2015

In Q1 2016, adware programs continued to top the rating of detected malicious objects for mobile devices. The share of adware programs grew 13 p.p. compared to Q4 2015, and reached 42.7%. Notably, this is lower than in Q3 2015 (52.5%).

Second place is occupied by an SMS Trojan, and it is the second quarter in a row that we have seen a growth in the share of detections of this type of object. In Q4 2015, the share of SMS Trojans rose dramatically from 6.2% to 19.8%, and grew by another 0.7 p.p. in Q1 2016, and amounted to 20.5%.

Trojan spyware programs, with a 10% share, were right behind the SMS Trojans. These programs steal the user’s personal data, including incoming messages (mTANs) from banks.

RiskTool software, or legal applications that are potentially dangerous to users, had occupied the first or second position in this rating for nearly two years. However, starting in Q4 2015 they fell to the fifth place. In Q4 2014, there share was 5.6%, and in Q1 2016 7.4%.

The share of banking Trojans has continued to grow, and amounted to 1.2% in Q1 2016.

TOP 20 mobile malware programs

Please note that this ranking of malicious programs does not include potentially dangerous or unwanted programs such as RiskTool or adware.

Name % of attacked users* 1 DangerousObject.Multi.Generic 73.7 2 Backdoor.AndroidOS.Ztorg.c 11.3 3 Trojan.AndroidOS.Iop.c 8.9 4 Trojan.AndroidOS.Ztorg.a 8.7 5 Trojan-Ransom.AndroidOS.Fusob.pac 6.2 6 Trojan-Dropper.AndroidOS.Agent.ar 4.6 7 Trojan-Clicker.AndroidOS.Gopl.a 4.5 8 Backdoor.AndroidOS.Ztorg.b 4.3 9 Trojan.AndroidOS.Iop.m 3.7 10 Trojan.AndroidOS.Agent.ej 3.7 11 Trojan.AndroidOS.Iop.q 3.5 12 Trojan.AndroidOS.Ztorg.i 3.3 13 Trojan.AndroidOS.Muetan.b 3.1 14 Trojan.AndroidOS.Agent.gm 3.1 15 Trojan-SMS.AndroidOS.Podec.a 3.1 16 Trojan-Downloader.AndroidOS.Leech.a 3.0 17 Trojan-Dropper.AndroidOS.Guerrilla.b 2.8 18 Exploit.AndroidOS.Lotoor.be 2.8 19 Backdoor.AndroidOS.Ztorg.a 2.8 20 Backdoor.AndroidOS.Triada.d 2.4

* Percentage of users attacked by the malware in question, relative to all users attacked

First place is occupied by DangerousObject.Multi.Generic (44.2%), used for malicious programs detected by cloud technologies. Cloud technologies work when the antivirus database contains neither the signatures nor heuristics to detect a malicious program, but the cloud of the antivirus company already contains information about the object. This is basically how the very latest malware is detected.

An increasing number of entries in the TOP 20 are occupied by Trojans that use advertising as their main means of monetization. Their goal is to deliver as much advertisements as possible to the user, employing various methods, including the installation of new adware. These Trojans may use superuser privileges to conceal themselves in the system application folder, from which it will be very difficult to delete them. In Q1, 16 such programs made it into the TOP 20: three programs from the family Backdoor.AndroidOS.Ztorg, three from the family Trojan.AndroidOS.Iop, two from the family Trojan.AndroidOS.Ztorg, plus Trojan-Dropper.AndroidOS.Agent.ar, Trojan-Clicker.AndroidOS.Gopl.a, Trojan.AndroidOS.Agent.ej, Trojan.AndroidOS.Muetan.b, Trojan.AndroidOS.Agent.gm, Trojan-Downloader.AndroidOS.Leech.a, Trojan-Dropper.AndroidOS.Guerrilla.b, and Backdoor.AndroidOS.Triada.d.

Backdoor.AndroidOS.Triada is a new entry in the TOP 20 of mobile malware. The main function of this Trojan is to redirect financial SMS transactions when the user makes online payments to buy additional content in legitimate apps. The money goes to the attackers rather than to the software developer. Triada is the most complex mobile malware program that we know of. Its distinctive feature is the use of the Zygote process to implement its code in the context of all the applications on the device. Triada penetrates virtually all applications running on the infected device, and continues to exist in the RAM memory only. In addition, all the Trojan’s separately launched processes are concealed from the user and other applications.

The ransomware Trojan Trojan-Ransom.AndroidOS.Fusob.pac is in fifth place (6.2%). This Trojan demands a $200 ransom from victims to unblock their devices. A substantial number of the victims are located in North America (the US and Canada) and Europe (mostly in Germany, Italy, the UK, Spain and Switzerland).

Trojan-SMS.AndroidOS.Podec.a (3%) has spent over a year now in the mobile malware TOP 20, although now it is beginning to lose ground. Earlier it was consistently among the top 5 mobile threats, but in Q1 2016 it only made it into the bottom half of the rating. The number of users attacked by this Trojan fell 1.7 times compared to Q4 2015. Its functionality has remained practically unchanged; the main means of monetization is still achieved by subscribing the user to paid services.

Also making it into the rating is Exploit.AndroidOS.Lotoor.be, an exploit used to gain local super-user rights.

The geography of mobile threats

The geography of mobile malware infection attempts in Q1 2016 (percentage of all users attacked)

Top 10 counties attacked by mobile malware (ranked by percentage of users attacked)

Country* % of users attacked** 1 China 38.2 2 Bangladesh 27.6 3 Uzbekistan 21.3 4 Algeria 17.6 5 Nigeria 17,4 6 India 17.0 7 Philippines 15.7 8 Indonesia 15,6 9 Ukraine 15.0 10 Malaysia 14.0

* We eliminated countries from this ranking where the number of users of Kaspersky Lab’s mobile security product is lower than 10,000.
** Percentage of unique users attacked in each country relative to all users of Kaspersky Lab’s mobile security product in the country.

China topped the ranking, with 40% of users encountering a mobile threat at least once during the year. To recap, in 2015 China also came first in the ranting.

In all the countries of the Top 10 except for China the most popular mobile malware was the same – advertising Trojans that appeared in the TOP 20 mobile malware, and AdWare. In China, a significant proportion of attacks also involved advertising Trojans, but the majority of users encountered the Backdoor.AndroidOS.GinMaster and Backdoor.AndroidOS.Fakengry families. Representatives of the RiskTool.AndroidOS.SMSreg family were also popular. If used carelessly, these programs could result in money being withdrawn from a mobile account.

The safest countries are Taiwan (2.9%), Australia (2.7%) and Japan (0.9%).

Mobile banking Trojans

Over the reporting period, we detected 4,146 mobile Trojans, which is 1.7 times more than in the previous quarter.

Number of mobile banking Trojans detected by Kaspersky Lab solutions (Q2 2015 – Q1 2016)

Geography of mobile banking threats in Q1 2016 (number of users attacked)

The number of attacked users depends on the overall number of users within each individual country. To assess the risk of a mobile banker Trojan infection in each country, and to compare it across countries, we created a country ranking according to the percentage of users attacked by mobile banker Trojans.

Top 10 counties attacked by mobile banker Trojans (ranked by percentage of users attacked)

Country* % users attacked** 1 China 0.45 2 Australia 0.30 3 Russia 0.24 4 Uzbekistan 0.20 5 Ukraine 0.08 6 France 0.06 7 Byelorussia 0.05 8 Turkey 0.05 9 Japan 0.03 10 Kazakhstan 0.03

* We eliminated countries from this ranking where the number of users of Kaspersky Lab’s mobile security product is lower than 10,000.
** Percentage of unique users in each country attacked by mobile banker Trojans, relative to all users of Kaspersky Lab’s mobile security product in the country.

In Q1 2016, first place was occupied by China where the majority of affected users encountered the Backdoor.AndroidOS.GinMaster and Backdoor.AndroidOS.Fakengry families of mobile banker Trojans. In second place was Australia where the Trojan-Banker.AndroidOS.Acecard family was replaced by the Trojan-Banker.AndroidOS.Marcher family as the most popular threat.

TOP 10 countries by the percentage of users attacked by mobile banking Trojans relative to all attacked users

An indication of how popular mobile banker Trojans are with cybercriminals in each country can be provided by the percentage of users who were attacked at least once by mobile banker Trojans during the quarter, relative to all users in the same country whose mobile security product was activated at least once in the reporting period. This ranking differs from the one above:

Country* % users attacked** 1 Australia 13.4 2 Russia 5.1 3 United Kingdom 1.6 4 Turkey 1.4 5 Austria 1.3 6 France 1.3 7 Poland 1.2 8 China 1.1 9 Hong Kong 1 10 Switzerland 0.9

* We eliminated countries from this ranking where the number of users of Kaspersky Lab’s mobile security product is lower than 10,000.
** Percentage of unique users in each country attacked by mobile banker Trojans, relative to all unique users attacked by mobile malware in the country.

To recap, Australia was among the Top 3 countries with the lowest percentage of users attacked by mobile malware. However, in this ranking Australia ended in first place: more than 13% of all users attacked by mobile malicious programs were attacked by mobile bankers. Meanwhile China, which came first in the previous ranking, ended the quarter in tenth place. In other words, in China the cybercriminals’ mobile banking Trojans are less popular than other types of mobile malware.

Mobile Trojan-Ransom

In Q1 2016, we detected 2,896 mobile ransomware samples, which is 1.4 times more than in the previous quarter.

>Number of mobile Trojan-Ransomware programs detected by Kaspersky Lab (Q2 2015 – Q1 2016)

TOP 10 countries attacked by Trojan-Ransomware as a percentage of attacked users:

Country* % of users attacked ** 1 Kazakhstan 0.92 2 Germany 0.83 3 Uzbekistan 0.80 4 Canada 0.71 5 Italy 0.67 6 Netherlands 0.66 7 United Kingdom 0.59 8 Switzerland 0.58 9 USA 0.55 10 Spain 0.36

* We eliminated countries from this ranking where the number of users of Kaspersky Lab’s mobile security product is lower than 10,000.
** Percentage of unique users in each country attacked by mobile banker Trojans, relative to all users attacked by mobile malware in the country.

In all the countries of the TOP 10, except for Kazakhstan and Uzbekistan, the most popular Trojan-Ransom family was Fusob, especially its Trojan-Ransom.AndroidOS.Fusob.pac modification (note, this malicious program was fifth in the ranking of mobile threats).

In Kazakhstan and Uzbekistan, which came first and third respectively, the main threat to users originated from representatives of the Small family of mobile Trojan-Ransom. This is a fairly simple ransomware program that blocks operation of a device by overlaying all the windows on the device with its own window and demands $10 to unblock it.

Vulnerable applications used by cybercriminals

In Q1 2016, exploits for Adobe Flash Player remained popular. During the reporting period two new vulnerabilities in this software were detected:

  • CVE-2015-8651
  • CVE-2016-1001

The first exploit pack to add support for these vulnerabilities was Angler.

One notable event in the first quarter was the use of an exploit for Silverlight – CVE-2016-0034. At the time of publication, this vulnerability is used by the Angler and RIG exploit packs.

As is now traditional, some popular packs included an exploit for the Internet Explorer (CVE-2015-2419) vulnerability.

The overall picture of the use of exploits in the first quarter looks as follows:

Distribution of exploits used in attacks by the type of application attacked, Q1 2016

As expected, we have seen a decline in the share of exploits for Java (-3 percentage points) and an increase in the use of Flash exploits (+1 p.p.). There was also a significant increase in the percentage of exploits for Microsoft Office (+10 p.p.): this group mainly includes exploits for vulnerabilities in Microsoft Word. This significant growth was caused by spam mailings containing these exploits.

Overall, the first quarter of 2016 continued the trend of the past few years – cybercriminals are focused on exploits for Adobe Flash Player and Internet Explorer. In our chart, the latter is included in the “Browsers” category together with detections of landing pages that “distribute” exploits.

Online threats (Web-based attacks)

The statistics in this section were derived from web antivirus components that protect users from attempts to download malicious objects from a malicious/infected website. Malicious websites are created deliberately by malicious users; infected sites include those with user-contributed content (such as forums), as well as compromised legitimate resources.

In the first quarter of 2016, Kaspersky Lab’s web antivirus detected 18,610,281 unique malicious objects: scripts, exploits, executable files, etc. 74,001,808 unique URLs were recognized as malicious by web antivirus components.

Online threats in the banking sector

In the first three months of 2016, Kaspersky Lab solutions blocked attempts to launch malware capable of stealing money via online banking on 459,970 computers. We are witnessing a decline in financial malware activity: the figure for Q1 is 23.3% lower than in the previous quarter (597,415). A year ago, in Q1 2015 this figure was 699,652, which translates into a 34.26% fall in the number of victims over the past year.

Number of attacks by financial users, Q1 2016

Geography of attacks

To evaluate and compare the degree of risk of being infected by banking Trojans worldwide, we calculate the percentage of Kaspersky Lab product users who encountered this type of threat during the reporting period in the country, relative to all users of our products in the county.

Geography of banking malware attacks in Q1 2016 (percentage of attacked users)

Top 10 countries by the percentage of attacked users

Country* % attacked users** 1 Brazil 3.86 2 Austria 2.09 3 Tunisia 1.86 4 Singapore 1.83 5 Russia 1.58 6 Venezuela 1.58 7 Morocco 1.43 8 Bulgaria 1.39 9 Hong Kong 1.37 10 United Arab emirates 1.30

These statistics are based on the detection verdicts returned by the antivirus module, received from users of Kaspersky Lab products who have consented to provide their statistical data.
* We excluded those countries in which the number of Kaspersky Lab product users is relatively small (less than 10,000).
** Unique users whose computers have been targeted by banking Trojan attacks as a percentage of all unique users of Kaspersky Lab products in the country.

In Q1 2016, Brazil had the highest percentage of Kaspersky Lab users who were attacked by banking Trojans. One of the reasons for the growth of financial threats in this country was the emergence of cross-platform Trojan bankers. Noticeably, most countries in the TOP 10 have a high level of technological development and/or well-developed banking system which attracts cybercriminals.

In Russia, 1.58% of users encountered a banking Trojan at least once in Q1 (an increase of 1 p.p. compared to the previous quarter). In the US, the figure was 0.26%; Spain – 0.84%; Italy – 0.79%; Germany – 0.52%; the UK – 0.48%; France – 0.36%.

The Top 10 banking malware families

The table below shows the Top 10 malware families most commonly used in Q1 2016 to attack online banking users:

Name Number of users attacked 1 Trojan-Spy.Win32.Zbot 419940 2 Trojan-Downloader.Win32.Upatre 177665 3 Trojan-Banker.Java.Agent 68467 4 Trojan-Banker.Win32.Gozi 53978 5 Trojan-Banker.Win32.BestaFera 25923 6 Trojan.Win32.Tinba 24964 7 Trojan-Banker.Win32.Banbra 22942 8 Trojan-Banker.AndroidOS.Agent 19782 9 Trojan-Banker.AndroidOS.Abacus 13446 10 Trojan-Banker.Win32.ChePro 9209

Trojan-Spy.Win32.Zbot topped the ranking. It has become a permanent resident in this ranking, and it is no coincidence that it consistently occupies a leading position. The Trojans of the Zbot family were among the first to use web injections to compromise the payment details of online banking users and to modify the contents of banking web pages. They encrypt their configuration files at several levels; the decrypted configuration file is never stored in the memory in its entirety, but is instead loaded in parts.

The Trojan-Downloader.Win32.Upatre family of malicious programs came second in Q1 2016. The malware is no larger than 3.5 KB in size, and is limited to downloading the payload to the victim computer, most typically a banker Trojan from the Dyre/Dyzap/Dyreza family. The main aim of this family of banking Trojans is to steal the user’s payment details. Dyre does this by intercepting the data from a banking session between the victim’s browser and the online banking web app, in other words, it uses the “Man-in-the-Browser” (MITB) technique.

It is worth noting that the vast majority of the TOP 10 malware uses the technique of embedding arbitrary HTML code in the web page displayed by the browser and intercepting payment data entered by the user into the original and the inserted web forms.

The TOP 3 threats in the first quarter of 2016 include cross-platform banking malware written in Java. Brazilian cybercriminals have started actively using cross-platform Java Trojans. In addition, Kaspersky Lab experts detected new malicious software also written in Java and used to steal financial information – Adwind RAT. Adwind is written entirely in Java, which is why it can attack all popular platforms: Windows, Mac OS, Linux and Android. The malicious program allows attackers to collect and extract data from the system, as well as remotely control an infected device. To date, it is able to take screenshots, memorize keystrokes, steal passwords and data stored in browsers and web forms, take photos and videos via the webcam, make audio recordings using the microphone built into the device, collect general data about the user and the system, steal VPN certificates and keys from crypto currency wallets and, finally, manage SMS.

Fourth place in the TOP 10 is occupied by Trojan-Banker.Win32.Gozi, which penetrates working processes of popular web browsers to steal payment information. Some samples of this Trojan can infect the MBR (Master Boot Record) and maintain their presence in the operating system, even if it has been reinstalled.

One of the most interesting pieces of malware designed to steal financial data that did not make it into the TOP 10 is Gootkit. It is written using the software platform NodeJS and has a modular architecture. The malicious code interpreter is contained in its body; as a result, it is big – approximately 5 MB. To steal payment data, Gootkit uses http traffic interception and embeds itself in the browser. Other standard Trojan features include execution of arbitrary commands, auto-update, and capturing screenshots. However, this banking Trojan is not particularly widespread.

Top 10 countries where online resources are seeded with malware

The following statistics are based on the physical location of the online resources that were used in attacks and blocked by our antivirus components (web pages containing redirects to exploits, sites containing exploits and other malware, botnet command centers, etc.). Any unique host could be the source of one or more web attacks.

In order to determine the geographical source of web-based attacks, domain names are matched up against their actual domain IP addresses, and then the geographical location of a specific IP address (GEOIP) is established.

In Q1 2016, Kaspersky Lab solutions blocked 228,420,754 attacks launched from web resources located in 195 countries around the world. 76% of notifications on blocked web attacks were triggered by attacks coming from web resources located in 10 countries.

Distribution of web attack sources by country, Q1 2016

Q1 saw the Netherlands take over first place (24.6%) from the US (21.44%). Russia (7.45%) and Germany (6%), which followed them, also swapped places. Vietnam has dropped out the Top 10, while Bulgaria is a newcomer in eighth place with 1.75%.

Countries where users faced the greatest risk of online infection

In order to assess the risk of online infection faced by users in different countries, we calculated the percentage of Kaspersky Lab users in each country who encountered detection verdicts on their machines during the quarter. The resulting data provides an indication of the aggressiveness of the environment in which computers work in different countries.

Country* % of unique users attacked ** 1 Russia 36.28 2 Kazakhstan 33.19 3 China 32.87 4 Azerbaijan 30.28 5 Ukraine 29.96 6 Belarus 29.16 7 Slovenia 26.88 8 Armenia 26.27 9 Vietnam 25.14 10 Moldova 24.68 11 Kyrgyzstan 24.46 12 Spain 24.00 13 India 23.98 14 Brazil 23.68 15 Italy 22.98 16 Algeria 22.88 17 Lithuania 22.58 18 Croatia 22.04 19 Turkey 21.46 20 France 21.46

These statistics are based on the detection verdicts returned by the web antivirus module, received from users of Kaspersky Lab products who have consented to provide their statistical data.

* These calculations excluded countries where the number of Kaspersky Lab users is relatively small (fewer than 10,000 users).
** Unique users whose computers have been targeted by web attacks as a percentage of all unique users of Kaspersky Lab products in the country.

The leader of this ranking remained unchanged – it is still Russia with 36.3%. Since the previous quarter, Chile, Mongolia, Bulgaria and Nepal have left the Top 20. Newcomers to the ranking are Slovenia (26.9%), India (24%) and Italy (23%).

The countries with the safest online surfing environments included Germany (17.7%), Canada (16.2%), Belgium (14.5%), Switzerland (14%), the US (12.8%), the UK (12.7%), Singapore (11.9%), Norway (11.3%), Honduras (10.7%), the Netherlands (9.6%) and Cuba (4.5%).

On average, 21.42% of computers connected to the Internet globally were subjected to at least one web attack during the three months. This is a fall of 1.5 p.p. compared to Q4 2015.

Local threats

Local infection statistics for users computers are a very important indicator: they reflect threats that have penetrated computer systems using means other than the Internet, email, or network ports.

Data in this section is based on analyzing statistics produced by antivirus scans of files on the hard drive at the moment they were created or accessed, and the results of scanning removable storage media.

In Q1 2016, Kaspersky Lab’s file antivirus detected a total of 174,547,611 unique malicious and potentially unwanted objects.

Countries where users faced the highest risk of local infection

For each of the countries, we calculated the percentage of Kaspersky Lab product users on whose computers the file antivirus had been triggered during the quarter. These statistics reflect the level of personal computer infection in different countries.

Top 20 countries with the highest levels of computer infection

Country* % of unique users** 1 Somalia 66.88% 2 Yemen 66.82% 3 Armenia 65.17% 4 Kyrgyzstan 64.45% 5 Russia 64.18% 6 Tajikistan 64.06% 7 Bangladesh 63.00% 8 Vietnam 61.31% 9 Afghanistan 60.72% 10 Kazakhstan 60.62% 11 Nepal 59.60% 12 Uzbekistan 59.42% 13 Ethiopia 59.23% 14 Ukraine 58.90% 15 Byelorussia 58.51% 16 Laos 58.46% 17 Rwanda 58.10% 18 Iraq 57.16% 19 Algeria 57.50% 20 Moldova 56.93%

These statistics are based on the detection verdicts returned by on-access and on-demand antivirus modules, received from users of Kaspersky Lab products who have consented to provide their statistical data. The data include detections of malicious programs located on users’ computers or on removable media connected to the computers, such as flash drives, camera and phone memory cards, or external hard drives.

* These calculations exclude countries where the number of Kaspersky Lab users is relatively small (fewer than 10,000 users).

** The percentage of unique users in the country with computers that blocked local threats as a percentage of all unique users of Kaspersky Lab products.

Somalia became the new leader of this rating in Q1, with 66.9%. Bangladesh, the leader for the past few quarters, dropped to seventh place (63.6%). Newcomers to this ranking are Uzbekistan in 12th place (59.4%), Ukraine in 14th place (58.9%), Belarus in 15th place (58.5%), Iraq in 18th place (57.2%) and Moldova in 20th (57.0%).

The safest countries in terms of local infection risks were the Czech Republic (27.2%), Denmark (23.2%) and Japan (21.0%).

An average of 44.5% of computers globally faced at least one local threat during Q1 2016, which is 0.8 p.p. more than in Q4 2015.

Petya: the two-in-one trojan

Malware Alerts - Wed, 05/04/2016 - 06:39

Infecting the Master Boot Record (MBR) and encrypting files is nothing new in the world of malicious programs. Back in 1994, the virus OneHalf emerged that infected MBRs and encrypted the disk contents. However, that virus did not extort money. In 2011, MBR blocker Trojans began spreading (Trojan-Ransom.Win32.Mbro) that infected the MBR and prevented the operating system from loading further. The victim was prompted to pay a ransom to get rid of the problem. It was easy to treat a system infected by these blocker Trojans because, apart from the MBR, they usually didn’t encrypt any data on the disk.

Today, we have encountered a new threat that’s a blast from the past. The Petya Trojan (detected by Kaspersky Lab products as Trojan-Ransom.Win32.Petr) infects the MBR preventing normal system loading, and encrypts the Master File Table (MFT), an important part of the NT file system (NTFS), thus preventing normal access to files on the hard drive.

The infection scenario

The people spreading Petya attack their potential victims by sending spam messages containing links that download a ZIP archive. The archive contains the Trojan’s executable file and a JPEG image. The file names are in German (Bewerbungsunterlagen.PDF.exe, Bewerbungsmappe-gepackt.exe), are made to look like resumes for job candidates, and target HR staff in German-speaking countries.

Contents of the archives downloaded from links in spam

The cybercriminals didn’t bother with automatic escalation of privileges – the manifest of the Trojan’s executable file contains the following standard record:

If the user launches the malicious executable file Petya, Windows will show the standard UAC request for privilege escalation. If the system has been properly configured by the system administrators (i.e. UAC is enabled, and the user is not working from an administrator account), the Trojan won’t be able to run any further.

Unfortunately, a user who has the privileges to agree to a UAC request often underestimates the potential risks associated with launching unknown software with elevated rights.

How it works The executable file and the packer

A Petya Trojan infection begins with the launch of the malicious executable file. The samples of the Trojan that Kaspersky Lab received for analysis are, just like most other malware samples, protected with a customized packer. When the executable file launches, the malicious packer’s code begins to work – it unpacks the malicious DLL Setup.dll into a newly designated RAM area, and then passes control to it.

Cybercriminals typically use packers to avoid detection – circumvent static signatures, trick the heuristic analyzer, etc. While investigating the Petya packer, we noticed an unusual trick used by the cybercriminals.

Cybercriminals often try to create the packer in such a way that a packed malicious executable file looks as similar as possible to a regular legitimate file. Sometimes, they take a legitimate file and substitute part of the code with malicious code. That’s what they did with Petya, with one interesting peculiarity: it was a part of the standard compiler-generated runtime DLL that was replaced with malicious code, while the function WinMain remained intact. The illustration below shows the transition, beginning from the entry point (“start”). As can be seen, the function of unpacking malicious code (which we dubbed “evil”) is called from the legal function __calloc_crt which is part of the runtime code.

Diagram of transitions between the malicious packer’s functions

Why do it that way? Obviously, the creators of the malicious packer were trying to trick an inattentive researcher or automatic analyzers: the file looks legitimate – WinMain doesn’t contain malicious code – so it’s possible that it will be overlooked. Besides, if the breakpoint is set at WinMain during debugging, then the malicious code works (and sends the system into BSOD, as we will discuss later in detail) and execution is over before the breakpoint is even reached.

Kaspersky Lab has detected Petya samples that masquerade as legitimate files written in C/C++ and in Delphi.

The malicious DLL

Setup.dll is a DLL with just one export: _ZuWQdweafdsg345312@0. It is written in C and compiled in Microsoft Visual Studio. The cybercriminals used an implementation of cryptographic algorithms available in the public library mbedtls (formerly polarssl). Setup.dll is not saved to the hard drive as a separate file, but always remains in the RAM.

When Setup.dll receives control, it decrypts the data contained in the section ‘.xxxx’ and then proceeds to infect the victim computer.

The encrypted ‘.xxxx’ section containing data

Fragment of the decrypted data from the ‘.xxxx’ section

At a higher degree of abstraction, the actions of Setup.dll come down to the following:

  1. Re-write the boot record on the hard drive with its own malicious loader;
  2. Generate a key, infection ID and other auxiliary information, and save them to the hard drive;
  3. Cause a system abort and reboot, thereby passing control to the malicious loader.

Now let’s look in detail at how all of this is implemented in the Trojan. But before doing so, we need to define the terminology used.

Hard disk sector – the minimum addressable unit of a hard drive, typically 512 bytes.

Master boot record (MBR) – the code and the data written to Sector 0. After hardware is initialized, this code is used to boot the PC. Also, this sector contains the hard disks’ partition table. A disk partitioned with MBR may have up to four primary partitions, and the maximum partition size is ~2.2 TB.

GUID Partition Table (GPT) – a more modern standard of hard drive layout. It supports up to 128 partitions, each up to 9.4 ZB in size (1 ZB = 1021 bytes.)

Now let’s return to the Trojan under review. Setup.dll can infect disks partitioned according to either the older MBR standard or the more modern GPT standard. There are two alternative branches of execution sequences in the malicious program; the choice of execution branch depends on the data in the field PartitionStyle of the structure PARTITION_INFORMATION_EX.

Selection of the execution branch for disk infection, depending on whether the disk has MBR or GPT partitioning

Infecting an MBR disk

When infecting an MBR disk, Setup.dll performs the following actions:

  1. Encrypts sector 0 (the original code and the MBR data) with the simple operation XOR 0x37 (ASCII ‘7’), writes the result to sector 56;
  2. Encrypts sectors 1-33 with the same operation XOR 0x37;
  3. Generates configuration data for the malicious loader, writes them to sector 54;
  4. Creates the verification sector 55 populated with the repeating byte 0x37;
  5. Copies the disk’s NT signature and the partition table saved from the original MBR into its own first-level loader; writes first-level malicious code to sector 0 of the disk, and writes second-level code to sectors 34-50 (referred to here as the malicious loader);
  6. Calls the function NtRaiseHardError, which causes the operating system to crash (BSOD – the ‘blue screen of death’).

When an MBR disk has been infected, the beginning of the disk has the following structure:

Number of sector Content 0 First-level malicious loader 1 – 33 Encrypted sectors 1-33 (XOR 0x37) 34 – 50 Second-level malicious code … 54 Configuration sector of the malicious program 55 Verification sector (populated with byte 0x37) 56 Encrypted original MBR code (XOR 0x37) Infecting a GPT disk

When infecting a GPT disk, Setup.dll performs more actions:

  1. Based on Primary GPT Header data, it receives the address of GPT header copy;
  2. Encrypts the GPT header copy with XOR 0x37;
  3. Performs all the actions that are performed when encrypting an MBR disk.

When a GPT disk has been infected, the beginning of the disk has the following structure:

Number of sector Content 0 First-level malicious loader 1 – 33 Encrypted sectors 1-33 (XOR 0x37) 34 – 50 Second-level malicious code … 54 Configuration sector of the malicious program 55 Verification sector (populated with byte 0x37) 56 Encrypted original MBR code (XOR 0x37) … Backup LBA –
Backup LBA + 33 Encrypted copy of GPT Header (XOR 0x37) Generation of configuration data

In the configuration sector (sector 54), the Trojan keeps the data it needs to encrypt MFT and decrypt it if the victim pays the ransom. Generation of the configuration data consists of the following steps:

  1. Setup.dll generates a random string that is 16 characters long [1-9, a-x, A-X]; we will call this string password;
  2. Generate a pair of keys: ec_session_priv (a private key, a random large integer number) + ec_session_pub (public key, a point on a standard elliptic curve secp192k1);
  3. Calculate the session secret: session_secret = ECDH (ec_session_priv, ec_master_pub); the cybercriminals’ public key ec_master_pub is contained in the Trojan’s body;
  4. Calculate the aes_key = SHA512(session_secret) – only the first 32 bytes of the hash sum are used;
  5. Encrypt the ‘password’ string by XORing it with the first 16 bytes of ec_session_pub: password_xor = ec_session_pub[0, 15] xor password;
  6. Encrypt the result using AES-256 with the key aes_key: password_aes_encr = AES_enc(password_xor);
  7. Create the array ec_session_data = [ec_session_pub, password_aes_encr];
  8. Calculate base58: ec_session_data_b58 = base58_enc(ec_session_data);
  9. Use the result to calculate SHA256: digest = sha256(ec_session_data_b58);
  10. Create array: ec_data = [check1, check2, ec_session_data_b58], where check1, check2 are bytes calculated by the formulas:
    a = digest[0] & 0xF;
    b = (digest[0] & 0xF) < 10;
    check1 = (digest[0] >> 4) + 0x57 + ((digest[0] >> 4) < 10 ? 0xD9 : 0);
    check2 = a + 0x57 + (b ? 0xD9 : 0);
  11. Based on the ‘password’, create a key for MFT encryption;
  12. Pseudocode creating a key for MFT encryption

  13. Generate IV – 8 random bytes which will be used during MFT encryption;
  14. Generate infection ID and use it to create “personalized” URLs for ransom payment webpages.

Ultimately, the configuration data structure looks like this:

In C language syntax, this structure can be presented as follows:

This is what the configuration data looks like after it is written to the hard drive:

Note that if the user turns off their computer after this stage and doesn’t switch it on again, only minimum damage will be done, as it is not difficult to decrypt data encrypted with 1-byte XOR. Therefore, a good piece of advice: if you launch an unknown file and your system suddenly crashes, showing a blue screen, you should switch off your computer and get help from a qualified specialist. The specialist should be able to identify a Petya infection and restore the disk sectors encrypted with XOR.

If, however, the computer was re-booted, then the Trojan’s third stage kicks in – the malicious code written to sectors 0 and 34–50.

The malicious loader

After rebooting, the code in sector 0 (the first-level loader) gains control. It loads the main second-level malicious code from sectors 34–50 into the memory and passes control to it. This code, in turn, receives information about the hard drives available in the system, searches for the disk where the configuration is written, reads the configuration data from sector 54 and, depending on the value in the field ‘config.state’, begins encryption (if the value is 0) or asks the user to enter the decryption key that they have purchased (if the value is 1).

Fragment of code implementing the Trojan’s logic

Encryption of MFT

The master file table (MFT) is a data structure with information about every file and directory on a volume formatted into NTFS, the file system that is used in all modern versions of Windows. The table contains the service data required to find each file on the disk. It can be compared to a table of contents in a book that tells you on which page to find a chapter. Similarly, MFT indicates which logical cluster a file is located in.

It is namely this critical area that is attacked by Petya. If the value of ‘config.state’ is equal to 0 during launch, it does the following:

  1. Displays a fake disk check message:
  2. Reads the key ‘config.salsa_key’ from the configuration sector into a local array; sets this field to zero on the disk, sets ‘config.state’ field at 1;
  3. Encrypts the verification sector 55 with the stream cipher Salsa20; this sector is populated beforehand with the byte 0x37 (see the section ‘Infecting an MBR disk’ above);
  4. Searches for each partition’s MFT on each connected hard drive;
  5. Encrypts the MFT data with cipher Salsa20. Encryption is performed in parts of 8 sectors (i.e. the size of each part is 4 KB). A counter of the encrypted parts is kept in sector 57 of the first disk.
  6. When encryption is over, it triggers a system reboot.

After the reboot, Petya displays an animated image of a flashing red and white skull drawn in ACCII-art style.

If the user presses any key, the Trojan displays a text which tells the victim in no uncertain terms what has happened.

Ransom demand and decryption

On this screen Petya displays links to the ransom payment webpages located in the Tor network (the addresses are specified in config.mal_urls), and the “personal decryption code” which the victim has to enter at either of the above sites. In reality, this “code” is the content of the field ‘config.ec_data’, hyphenated every six characters.

So, how do the cybercriminals plan to decrypt MFT, and are they even capable of doing so?

The ‘Key:’ field on this screen accepts a text string from the user. This string is checked for length (a 16-character long string is required), and then the Trojan uses it to calculate a 32-byte ‘salsa_key’ (following the algorithm discussed above in the section ‘Generation of configuration data’). The Trojan then attempts to decrypt the verification sector 55 with this key, and checks that the decrypted sector is completely populated with the byte 0x37. If it is, the key is considered correct, and Petya uses it to decrypt MFT. Then it decrypts all starting sectors encrypted with XOR 0x37, decrypts the original MBR and prompts the user to reboot the computer.

Thus, the correct string to be entered in the ‘Key:’ field is that very same ‘password‘ string that is generated in the first step when the configuration data is created.

Screen message displayed after successful decryption

The question remains: how do the cybercriminals know this string so they can communicate it to a victim who has paid the ransom? No automatic communication with C&C servers is established during the entire infection life cycle. The answer lies in the description of the algorithm for generating configuration data.

The victim is prompted to manually enter their “personal decryption code” ec_data on the ransom payment webpage. The cybercriminal can then perform the following actions:

  1. Decode base58: base58_dec(ec_session_data_b58) = ec_session_data = [ec_session_pub, password_aes_encr]
  2. Calculate session_secret = ECDH(ec_session_pub, ec_master_priv), in accordance with the Elliptic curve Diffie–Hellman properties, where ec_master_priv is a private key known to the Trojan’s creators only;
  3. Calculate aes_key = SHA256(session_secret);
  4. Decrypt AES-256: password_xor = AES_dec(password_encr);
  5. Knowing ec_session_pub, calculate the original password based on password_xor.
The ransom payment webpage

When we visit the Tor site at the URL provided by the Trojan, we see a page that requires a CAPTCHA to be entered, after which the main ransom payment page is loaded. The design of the page immediately catches the eye, with its hammer and sickle and the word ‘ransomware’ in pseudo-Cyrillic. It looks like a USSR parody along the lines of the game Red Alert.

This page displays a countdown clock showing when the ransom price will be doubled, as well as regularly updated links to news and publications related to Petya.

When the ‘Start the decryption process’ button is pressed, you end up on a page that asks you to enter the value of ‘ec_data’, which is now called “your identifier” rather than “your personal decryption code”. It looks like the cybercriminals still haven’t decided what to call this part.

When the user enters this string, the site displays the amount of ransom in BTC, information on how to purchase bitcoins, and the address where the money should be sent.

As well as that, there are two other pages on the website: FAQ and Support.

The FAQ page

The FAQ page is interesting in that it contains false information: in reality, RSA is not used by the Trojan in any way, at any stage of infection.

The Support page

On the Support page, the user is given the option of sending a message to the cybercriminals. One phrase in particular stands out: “Please write your message in english, our russian speaking staff is not always available”. This implies that there is at least one person in the group who speaks Russian.

Geographic distribution

As we noted above, the spam messages target German-speaking victims. KSN statistics clearly show that Germany is the main target for the cybercriminals.

TOP 5 countries attacked by Petya Trojan by the number of attacked users:

Country Number of attacked users 1 Germany 579 2 China 19 3 India 8 4 Japan 5 5 Russian Federation 5 Conclusion

After analyzing the Petya Trojan, we discovered that it is an unusual hybrid of an MBR blocker and data encryptor: it prevents not only the operating system from booting but also blocks normal access to files located on the hard drives of the attacked system.

Although Petya is noticeably different from the majority of ransomware that has emerged in the recent years, it can hardly be described as a fundamentally new development. The ideas behind the Trojan have been seen before in earlier malware; the creators of Petya have simply combined them all in a single creation. That said, it should be acknowledged that it requires a certain degree of technical skill to implement a low-level code to encrypt and decrypt data prior to OS booting.

Another interesting peculiarity about Petya is the pseudo-Soviet graphic design on the ransom payment website; the name of the Trojan also fits into the image of a “Russian Trojan” designed by cybercriminals. There is no certainty as to whether the Trojan’s creators originally come from Russia or other former Soviet states; however, the text on the payment page suggests there is at least one Russian speaker in the gang.

Kaspersky Lab’s products protect users from this threat: Petya’s executable files are detected with the verdict Trojan-Ransom.Win32.Petr; in addition, the behavior analyzer proactively detects even unknown versions of this Trojan with the verdict PDM:Trojan.Win32.Generic.

P.S. How to decrypt your data without paying the ransom

On April 8, some independent researchers reported that they had found a method of restoring the password without paying the ransom to the cybercriminals. The method is based on a genetic algorithm; with the 8-byte long IV (stored in configuration sector 54) and the content of the encrypted verification sector 55, you can calculate the value of the password that generates the salsa key, which can then be used to decrypt the MFT.

Cloud Security

SANS Tip of the Day - Wed, 05/04/2016 - 01:00
One of the most effective steps you can take to protect your cloud account is to make sure you are using two-step verification. In addition, always be sure you know exactly whom you are sharing files with. It is very easy to accidently share your files with the entire Internet when you think you are only sharing them with specific individuals.