HOMOGENEOUS SECOND ORDER DIFFERENTIAL EQUATIONS

To determine the general solution to homogeneous second order differential equation:
\[y'' + p(x) y' + q(x) y = 0 \]

Find two linearly independent solutions \(y_1 \) and \(y_2 \) using one of the methods below.

Note that \(y_1 \) and \(y_2 \) are **linearly independent** if there exists an \(x_0 \) such that Wronskian
\[
W(y_1, y_2)(x_0) = \det \begin{bmatrix} y_1(x_0) & y_2(x_0) \\
y'_1(x_0) & y'_2(x_0) \end{bmatrix} = y_1(x_0)y'_2(x_0) - y_2(x_0)y'_1(x_0) \neq 0
\]

The general solution is \(y(x) = C_1 y(x) + C_2 y(x) \) where \(C_1 \) and \(C_2 \) are arbitrary constants.

METHODS FOR FINDING TWO LINEARLY INDEPENDENT SOLUTIONS

<table>
<thead>
<tr>
<th>Method</th>
<th>Restrictions</th>
<th>Procedure</th>
</tr>
</thead>
</table>
| **Reduction of order** | Given one non-trivial solution \(f(x) \) to \(y'' + p(x) y' + q(x) y = 0 \) | Either:
1. Set \(y(x) = v(x) \cdot f(x) \) for some unknown \(v(x) \) and substitute into differential equation.
2. Now we have a separable equation in \(v' \) and \(v'' \). Use the Integrating Factor Method to get \(v' \) and then integrate to get \(v \).
3. Substitute \(v \) back into \(y(x) = v(x) \cdot f(x) \) to get the second linearly independent solution.
Or:
\[
y(x) = f(x) \cdot \int e^{-\int p(x) dx} \frac{f(x)}{[f(x)]^2} \, dx
\]
where \(y(x) \) is the second linearly independent solution. |
| **Characteristic (Auxiliary) Equation** | \(a y'' + b y' + c y = 0 \) where \(a, b \) and \(c \) are constants | 1. Find solutions \(r_1 \) and \(r_2 \) to the characteristic (auxiliary) equation: \(ar^2 + br + c = 0 \)
2. The two linearly independent solutions are:
 a. If \(r_1 \) and \(r_2 \) are two real, distinct roots of characteristic equation:
 \(y_1 = e^{r_1 x} \) and \(y_2 = e^{r_2 x} \)
 b. If \(r_1 = r_2 \) then \(y_1 = e^{r_1 x} \) and \(y_2 = xe^{r_1 x} \).
 c. If \(r_1 \) and \(r_2 \) are complex, conjugate solutions: \(\alpha \pm \beta i \) then \(y_1 = e^{\alpha x} \cos \beta x \) and \(y_2 = e^{\alpha x} \sin \beta x \) |
METHODS FOR FINDING TWO LINEARLY INDEPENDENT SOLUTIONS (cont.)

<table>
<thead>
<tr>
<th>Method</th>
<th>Restrictions</th>
<th>Procedure</th>
</tr>
</thead>
</table>
| Variable Coefficients, (Cauchy-Euler) | $ax^2y'' + bxy' + cy = 0$ $x > 0$ | 1. Substitute $y = x^m$ into the differential equation. It simplifies to $am^2 + (b - a)m + c = 0$. If m is a solution to the characteristic equation then $y = x^m$ is a solution to the differential equation and
 a. If m_1 and m_2 are two real, distinct roots of characteristic equation then $y_1 = x^{m_1}$ and $y_2 = x^{m_2}$
 b. If $m_1 = m_2$ then $y_1 = x^m$ and $y_2 = x^m \ln x$.
 c. If m_1 and m_2 are complex, conjugate solutions $\alpha \pm \beta i$ then $y_1 = x^\alpha \cos(\beta \ln x)$ and $y_2 = x^\alpha \sin(\beta \ln x)$ |

Example #1. Solve the differential equation: $2t^2y'' + ty' - 3y = 0$, given that $y_1(t) = t^{-1}$ is a solution.

Solution:

Let $y(t) = v(t) \cdot y_1(t) = v \cdot t^{-1}$

$y'(t) = v'(t) \cdot y_1(t) + v(t) \cdot y_1'(t) = v' \cdot t^{-1} - v \cdot t^{-2}$

$y''(t) = v''(t) \cdot y_1(t) + 2v'(t) \cdot y_1'(t) + v(t) \cdot y_1''(t) = v'' \cdot t^{-1} - 2v' \cdot t^{-2} + 2vt^{-3}$

$2t^2y'' + ty' - 3y = 0 \implies 2t^2(v'' \cdot t^{-1} - 2v' \cdot t^{-2} + 2vt^{-3}) + (v' \cdot t^{-1} - v \cdot t^{-2}) - 3(v \cdot t^{-1}) = 0$

$2tv'' - 4v' + 4vt^{-1} + v' - vt^{-1} - 3vt^{-1} = 0$

$2tv'' - 3v' = 0$

Let $v' = u$ so $v'' = u'$ then

$2tv'' - 3v' = 0 \implies 2tu' - 3u = 0$

$u' - \frac{3}{2t} u = 0$ (First order linear equation)

$u = t^{3/2} \implies v = \frac{2}{5} t^{5/2}$, at this point we can ignore the constant coefficients so take $v = t^{5/2}$

Substitute v back into $y(t) = v(t) \cdot y_1(t)$ to get the second linearly independent solution.

$y_2 = v \cdot y_1 = t^{5/2} \cdot t^{-1} = t^{3/2}$

The general solution is:

$$y = C_1y_1 + C_2y_2$$

$$y = C_1t^{-1} + C_2t^{3/2}$$
Example #2. Solve the differential equation: \(y'' - 2y' + y = 0 \)

Solution:

Characteristic equation:
\[
\begin{align*}
0 & = r^2 - 2r + 1 = 0 \\
(r-1)^2 & = 0 \\
r & = 1, 1 \quad \text{(Repeated roots)}
\end{align*}
\]

\(\Rightarrow y_1 = C_1e^x \) and \(y_2 = C_2xe^x \)

So the general solution is:
\[
y = C_1e^x + C_2xe^x
\]

Example #3. Solve the differential equation: \(t^2 y''(t) - 4ty'(t) + 4y(t) = 0 \), given that \(y(1) = -2 \), \(y'(1) = -11 \)

Solution: The substitution: \(y = t^m \) yields to the characteristic equation:
\[
\begin{align*}
m^2 + (-4 - 1)m + 4 & = 0 \\
m^2 - 5m + 4 & = 0 \\
(m - 4)(m - 1) & = 0 \\
m & = 4 \text{ or } m = 1 \quad \text{two distinct, real solutions}
\end{align*}
\]

So the solutions are: \(t^4 \) and \(t \). The general solution is
\[
y = C_1t^4 + C_2t
\]

Use \(y(1) = -2 \), \(y'(1) = -11 \) to find the solution to the initial value problem:
\[
\begin{align*}
y(1) & = -2 \quad \Rightarrow C_1 + C_2 = -2 \\
y'(1) & = -11 \quad \Rightarrow 4C_1 + C_2 = -11
\end{align*}
\]

Solving the system of linear equations gives us \(C_1 = -3 \) and \(C_2 = 1 \)

So the solution to the Initial Value Problem is
\[
y = t - 3t^4
\]

You try it:

1. Given that \(y_1(x) = e^{2x} \) is a solution of the following differential equation \(9y'' - 12y' + 4y = 0 \). Use the reduction of order to find a second solution.
 (Hint: \(y'' = 0 \) implies \(y' = 1 \))

 Find the general solution of the given second-order differential equations:
2. \(3y'' + 2y' + y = 0 \)
3. \(x^2 y'' + 5xy' + 4y = 0 \)
Solutions:

#1: \(y_2 = x e^{2/3} \)

#2: \(y = e^{-2/3} \left[C_1 \cos \left(\frac{\sqrt{2}}{3} x \right) + C_2 \sin \left(\frac{\sqrt{2}}{3} x \right) \right] \)

#3: \(y = C_1 x^{-2} + C_2 x^{-2} \ln x \)