Towards Impact Assessment Automation for Multi-Stage Cyber Attacks

Adam Stotz
Moises Sudit
Jared Holsopple

September 2007
Agenda

• Introduction/Motivation
• Cyber Attack Background
• Challenges
• Overall Impact/Situation Assessment Framework
 • Virtual Terrain
 • INFERD*
 • TANDI
 • VTAC
Introduction and Motivation

• Computer networks
 • Can contain sensitive information
 • Can perform critical missions
 • Are constantly targeted by hackers
 • Contain vulnerabilities

• Hackers
 • Think “outside the box”
 • Constantly find new ways to attack
 • Vary widely in skill, but even inexperienced hackers can cause damage

• Many speculate that the next major terrorist attack will be executed via the Internet
 • At a minimum, critical information and/or missions would be compromised
“Typical” Execution of Cyber Attacks

Originate from one or more computers outside of network

- Attacks originating internal to the network are “insider threats”
- Web servers, FTP servers, VPN servers usually most vulnerable to initial attack

Compromised computers can be used as “stepping stones”
Combating Cyber Attacks

• Detecting attacks
 • Intrusion Detection Sensors (IDS)
 • Analyze network traffic for attack signatures
 • Generate alerts for suspicious traffic
 • Placed throughout network
 • System logs
 • Size can make them unmanageable
 • In-house tools
Analyzing incoming attacks

- IDS Alerts/Log messages typically presented in spreadsheet format

- **Information Overload**
- Automated tool would allow analyst to quickly assess the location and severity of threat
Challenges for Automated Impact Assessment

- No “common” representation of a computer network
 - Contextual information (services, operating systems) is valuable for automation

- Lack of Public Data
 - Companies/agencies will not release Cyber Attack data

- Current data
 - Is usually simulated
 - Does not contain important contextual information
 - (Near) complete list of services, operating systems
 - Firewall rules
 - Mission information
Overall Architectural Vision

Components of Virtual Terrain
- Topology: Hardware and Software Infrastructure
- Vulnerabilities
- Information
- Cyber Sensors

A Priori Cyber Sensor Management

Sensed Virtual Terrain

Cyber Traffic

Situation Awareness and Impact Assessment
- Perception (Current Situation) INFERD
- Comprehension (Current Impact) VTAC
- Projection (Future Situation) TANDI
- Anticipation (Future Impact) TANDI+VTAC

Visualization

Decision Maker
- Action
- Forensics

On-Line Cyber Sensor Management

Service-Oriented-Architecture
INFERD Design

- **Hierarchical Fusion Framework**
 - Allows for bottom-up and top-down information analysis
 - Multiple levels of aggregation
- **Operational and Computational Efficiencies**
 - Minimize *a priori* knowledge
 - Distributed Architecture makes System Scalable to Varying Size Networks
 - System performs streaming on-line processing
 - Exact amount of information (no more and no less) at each stage of decision-making
- **Human-in-the-loop drives Fusion Process**
 - Avoid the overflow of raw data and maximize relevant information/knowledge
 - Situational Assessment (what is happening?) - ECCARS
 - Impact Assessment (what could happen?) – Future Programs
- **Interoperability with other Systems**
 - General Visualization Interface
 - Input interface for multiple sensor types & formats
 - Connectivity to Forensics for Adaptive Learning
Introduction and Motivation

- Sensor Location and Settings
 - Efficient Deployment
- Initial Knowledge of Domain and Objectives
- Physical/Virtual Domain of Interest
 - Sensors Type 1
 - Sensors Type 2
 - Sensors Type n
- Cleansing, Filtering and Homogenizing Data
- Hypothesis Generation
- Automatic SME
- Target Graphs Database
- Corpus of Evidence
- Discovery
- Decision Maker
- Impact & Threat
- Adaptive Learning
- Minimize Apriori Knowledge
- INFERD
- Detection & Tracking
- SA/IA Visualization
- Multiple Formats
- Completeness
Concept of Operations

Cyber Kill Chain

Detection vs. Prevention
• Designed for stream-based tracking of *non-traditional* sensed events
 - non-traditional = sensor observations other than position/velocity on physical moving targets
 - *Context* plays an important role
• Accomplished by 6 main processing modules
 - Data Alignment
 - Connotation Elicitation
 - Data Association
 - Track Update + Reporting
 - Ambiguity Detection and Resolution
 - Track Archival

New tracking process stage necessitated by non-traditional data
Present in traditional tracking systems
Information Flow within INFERD

- **Sensing**
 - Input: Network / host activity
 - Process: Cyber IDS(s) calculate anomalous or malicious patterns/signatures
 - Output: Alerts in their own heterogeneous formats in distributed network locations

- **Data Alignment**
 - Input: Heterogeneous / distributed alert data bases
 - Process: Ingests the heterogeneous / distributed alerts via network messaging services and provides a common access language for the INFERD fusion models to leverage
 - Output: Sensor Message = the alert with homogenized data access layer

- **Connotation Elicitation**
 - Input: Sensor Message
 - Process: Fusion model applies a contextual model-based understanding to the Sensor Message
 - Output: Elicited Message = Sensor Message with added model-based meaning

- **Data Association**
 - Input: Elicited Message
 - Process: Uses elicited information to associate the Elicited Message with information track(s) of relevance. Relevance determination is model defined.
 - Output: Information Track(s) of relevance

- **Track Update + Reporting**
 - Input: Elicited Message + Relevant Information Tracks
 - Process: Updates track structure with newly associated information. This update is model based.
 - Output: Report updates to publish to INFERD clients.
Sample Cyber Model

1. Multi-layer definition tying fusion process to specific fusion problem environments.
2. Defines how dynamic hypotheses are generated from data stream and what their content will be.

- **Events of Interest (EoI)**
 - Events INFERD will elicit from input data stream
 - Each EoI is composed by a set of *Features*
 - E.g. EoI’s:
 - Recon Scan DMZ
 - Recon Footprint DMZ
 - ...

- **Features**
 - Define *constraints* which when satisfied by the input data stream, assert the hypothesis that an EoI has occurred
 - E.g. Features:
 - Feature 1
 - Feature 2
 - ...

- **Constraints**
 - Static or dynamic
 - Can reference values within or between Sensor Messages and Information Tracks
Sample Association

- Model defines relation between Intrusion Root DMZ and Recon Scan Internal
 - “If target IP of hypothesized attack in DMZ = source IP of hypothesized attack in internal network than the 2 events are related”

- Model also defines Feature constraints which instruct Connotation Elicitation module to see the alert as a Recon Scan Internal (Feature and constraints not shown)
 - “If Attack Signature = sig1 and Target IP = ip2 Then event is a Recon Scan Internal”

- Data Association module sees that the newly hypothesized Recon Scan Internal attack satisfies the relation constraint defined above so reports the track as relevant
 - “Since source IP of Recon Scan Internal attack = target IP of Intrusion Root DMZ attack, the attacks are related.”
Track Update Example

- Dynamic variables take on values during track update
Benefits of INFERD to the Analyst

- Near “real-time” detection of cyber attacks
 - System runs at real-time for the AFRL DIW network
 - Scalable to larger networks
- Perception and Comprehension of complex coordinated attacks
 - INFERD fuses alerts into dynamic attack tracks
 - Attack tracks provides Situational Awareness (SA) to analyst
 - Ranking measurements filters hypotheses of interest (Depth, Abnormality, Others)
 - Abnormality and Defragmentation Handlers aid in Comprehension of SA
- Minimize requirement of a-priori knowledge
 - Guidance Templates (models) guide dynamic attack track creation
 - Model flexibility enables new hacker behavior and sensor accommodation
- Interoperability with third-party providers
 - DAO allows for interoperability without sacrificing real-time performance
 - Easy to interface with visualization (Flexviewer) or forensics (TMODS)
- Designed to be extendable for growth of capabilities and applications
 - Automatic Knowledge Reasoning: Pedigree, Discovery and/or Conflict Resolution
 - System Need NOT BE IDS-Centric
 - Impact Assessment or Prediction of Adversary Behavior
 - Process Refinement or Sensor Management
 - Other domains: Asymmetric warfare, Disease Surveillance, IED Detection, etc.
Implementation

- Skaion generated data sets
 - Used in Blind Test evaluation
- Alion Corporate Network
- DTO, AFRL, DIW
- Other Sites
Performance Evaluation and Metrics

- **Confidence:** correctly identify the situation(s)
- **Recall:** Activities detected in relation to the “total known”
- **Precision:** Activities detected in relation to number of detections
- **Fragmentation:** Activities reported as multiple s that should have been singleton
- **Mis-Association:** Activities reported as a singleton that should have been multiple

- **Purity** – characterizes the quality of the detections
- **Mis-Association Rate:** Evidence incorrectly assigned to a given activity
- **Evidence Recall:** Evidence detected in relation to the “total known”

- **Cost Utility** – measure of the system in identifying “important” situations
- **Weighted Cost:** Total available cost achieved savings by the system
- **Attack Score:** Attacks identified and where they appear in the proposed list

- **Timeliness** – measures the ability of the system to respond within time requirements of a particular domain
Conclusions

- Does not require network information
 - Robust to changing network configurations
 - Prone to false positives from sensors
 - Easy to configure and install on networks of any size/shape
- Can provide network assessment in real-time
 - Gives security analyst a chance to react to critical multi-stage attacks
 - Does not perform complex relationship analysis

Future Work

- Add subsequent layered processing to include detailed network information when available (Comprehension)
- Predict future attack vectors (Anticipation)
Virtual Terrain (Network Representation)

- **Infrastructure Topology**
 - Hardware
 - Software
 - Connectivity
- **Information**
 - Privileges
 - Location
 - Criticality
 - User, etc.
- **Cyber Sensors**
 - Type,
 - Location,
 - Pedigree, etc.
Virtual Terrain (VT) Definition

<table>
<thead>
<tr>
<th>Allowed from</th>
<th>Port #</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.1</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>11.x</td>
<td>SMTP</td>
</tr>
<tr>
<td>0</td>
<td>20.x</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>XXX</td>
<td>-</td>
</tr>
</tbody>
</table>

firewall rules

Routers/switches

Hosts/Host-clusters

Users & Accounts

service exposures

S. Jay Yang, RIT

Fusion 2007
The Use of VT

Hosts/Host-clusters

Routers/switches

Users & Accounts

Capability

Opportunity

Hosts containing similar service vulnerability are exposed:

- Firewall and permission rules define a dynamic neighbor list for each attacked host
- User accounts and privilege levels define potentially threatened hosts

UNCLASSIFIED
• Domain independent implementation
• Data structures provide contextual information
• Algorithms provide different perspectives of analysis
• Multiple threat scores on an entity are fused using Dempster-Shafer
VTAC: Virtual Terrain Assisted Impact Assessment for Cyber Attacks

- Can calculate impact for hosts, services, users, network
Insider Attack

Initial IU to peak is not administrator

Inside machines affected before external server subnets being impacted
• Can see the progression of different attack tracks at specific times
• For illustrative purposes, assumed that scenarios happened at the same time w/ same inter-step times
Future Work

- Refine INFERD
- Refine TANDI algorithms
- Integrate TANDI/VTAC for current and future impact

Automated impact assessment

- Is necessary to improve an analyst’s view of the situations
- Should allow the analyst to be the final decision-maker
- Requires better network service technology to be truly effective