Sorry, you need to enable JavaScript to visit this website.

magnify
  • Renewable Energy
    Impacts on Climate Change
  • Microscale Heat Transfer
    Satish Kandlikar: Reduced in Heat in Electronic Devices
  • Nanocomputing
    Brain Power
  • Advancing Tissue Engineering
    Research by RIT Professor Points to Improvements in Tissue Engineering
  • Micro-Device Research
    Photonics Light The Way of Microprocessors
  • Cutting Edge Research
    MOVPE Equipment Changes Everything in Semiconductor Processing
  • Plasmonic Electronics
    Exploring a Plasmonic Alternative
  • Micro-Device Research
    Implantable Micro-Device Research Could Lead To New Therapies To Treat Hearing Loss
  • Stellar Students
    Advancing Lithium Ion Battery Technology
  • Truly Unique
    Micro-Device Research
  • Truly Unique
    RIT's Semiconductor and Microsystems Fabrication Laboratory

Microsystems Engineering builds on the fundamentals of traditional engineering and science and tackles technical challenges of small-scale nano-systems. Microsystems Engineers manipulate electrical, photonic, optical, mechanical, chemical, and biological systems on a nano-scale.

Learn More »

 

Testimonials

  • Peng Xie - PhD Graduate
    I found my Microsystems experience prepared me well for the challenges of industry. During my Ph.D. program, I had taken a 1-year internship at IMEC as well as a 4 months internship at GlobalFoundries. These experiences helped me to better understand the workspace, expand my professional network and get a pulse of where the industry is heading. With my solid preparation at RIT, I am confident that I am ready to take on any challenges in the future.
  • Cory Cress - PhD Graduate
    During my time at RIT, I performed research in the NanoPower Research Labs. It was here that I learned how to create nanomaterials and devices. I learned how to understand them, and test their performance. Now, I use these skills at the US Naval Research Lab in Washington, DC. My work here has a massive impact on how electronics are created.
  • Burak Baylav - PhD Graduate
    I had access to the latest technology, tools and data. It was a dream come true and I was able to use this relationship for my Ph.D. research.”
  • Anand Gopalan - PhD Graduate
    “While working toward my PhD in Microsystems at RIT, I was exposed to cutting edge technology with the opportunity to be part of industry supported research.”
  • Monica Kempsell Sears - PhD Graduate
    I’ve always wanted to be one of the people who figures out how to push this field further and further—and now I am.

Research

  • Terahertz light is light in-between the microwave and mid-infrared region of the electromagnetic spectrum. Only over the last decade did terahertz technology mature to the point where we can know think about deploying this part of the electromagnetic spectrum for measurement and control purposes in industry. The Terahertz Materials Characterization Laboratory at RIT develops terahertz based material characterization techniques relevant to the...

  • The Semiconductor Photonics and Electronics Group focuses on developing highly efficient III-V and III-Nitride semiconductors for photonic, optoelectronic, and electronic devices. High-efficiency III-V and III-Nitride semiconductor based photonic and optoelectronic devices such as lasers and light-emitting diodes (LEDs) are considered as promising candidates for next generation communication and illumination system.  The research group is...

  • Our group is broadly interested in light-matter interactions from the perspective of fundamental science as well as technological applications. Currently we are focused on the interplay of electromagnetic modes of radiation, such as laser light, with nanofabricated components, such as mechanical oscillators and rotors. Our aims are the cooling of macroscopic objects into the quantum regime and to establish the limits to quantum sensing of...

  • Innovative and greener chemical processes are needed in order to address societal grand challenges, which mostly involve conservation of resources. One of such societal grand challenges is future fresh water supply, for example. New water desalination technologies are urgent considering that 98% of water available in our planet is sea water or brackish water. Our research group focuses on the development of next generation chemical processes...

  • Nanofabrication technology has been central to the field of semiconductor device manufacturing for many years.  As applications grow beyond microelectronics, new needs for research into nanoscale patterning and materials emerge.  The Nanolithography Research Laboratories at RIT has pioneered key advances in nanopatterning and materials technologies that have driven nanolithography into sub-30nm regimes.  Activities are underway in optical (UV...