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A B S T R A C T

In this paper, we present an alternative to Hapke’s correction for the photometric effect of macroscopic
roughness of planetary surfaces (Hapke, 1984). Our model includes the effects of both single-facet scattering
and multi-facet scattering. The single-facet scattering model is derived directly from the definition of
bidirectional reflectance of a rough surface. We model projected shadowing by adopting an approximation
published elsewhere in the literature. Monte Carlo simulations of single-facet scattering demonstrate very
good agreement with the single-facet scattering component of our model. Using 3D printed molds with known
roughness statistics, we prepared rough mineral surfaces consisting of quartz and olivine in the laboratory.
We recorded extensive measurements of the rough surface bidirectional reflectance over a wide range of
illumination and view geometries at 1751 wavelength bands ranging from 500–2250 nm. By fitting the
residual between the measured bidirectional reflectance and our single-facet scattering model, we developed
an empirical approximation for multi-facet scattering. Our results show that the multi-facet scattering is
proportional to the surface’s diffusive reflectance, RMS slope, and the cosine of the illumination angle.
Furthermore, the multi-facet scattering is approximately Lambertian for phase angles less than 90◦ but becomes
forward scattering at higher phase angles. Our empirical multi-facet scattering model incorporates all of
these features. As a surface becomes more macroscopically rough, our data show that the overall reflectance
distribution becomes progressively more backscattering in a way that is distinct from the shadow hiding
opposition effect. We refer to this effect as the macroscopic roughness backscattering bias (MRBB), which
affects the entire hemisphere rather than being localized to small phase angles. Our proposed model is more
accurate than Hapke’s for phase angles less than 90◦, and the accuracy of the two models is comparable
at higher phase angles. However, researchers should be aware of an issue regarding the roughness parameter
defined in Hapke’s model, namely the fact that ‘‘ϑ’’ is not actually equal to the mean slope angle of the surface
for the probability density function used in the model. This is an issue which apparently has gone unnoticed
in the literature, and has potentially caused the model to be applied incorrectly in past studies.
1. Introduction

A major challenge in the field of planetary remote sensing is to
adequately model the effects of surface roughness on bidirectional re-
flectance measurements. As discussed in Shepard and Campbell (1998),
the parameterization of surface roughness is a difficult problem due to
the fact that surface statistics, such as root-mean-square (RMS) heights
or slopes, vary depending on the length scale over which they are
measured. For this reason, it is useful to draw a distinction between the
wavelength scale roughness, particle scale roughness, and macroscopic
roughness of a particulate medium. The wavelength scale roughness
of individual particles and its effect on the single scattering phase
function have been described extensively (Hapke, 1986, 2012b). At the
particle scale, surface particles may shadow deeper particles within
the medium, resulting in the well known shadow hiding opposition
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effect (SHOE) as detailed in Ch. 9 of Hapke (2012b). Even for media
in which the particles are smaller than the wavelength, particles may
adhere to one another to form larger clumps, giving rise to a SHOE.
Particle scale shadowing effects have also been investigated analytically
in Cierniewski (1987) and using ray tracing in Shkuratov et al. (2005)
and Muinonen et al. (2011). However, in this paper we are concerned
with macroscopic roughness, i.e. roughness whose length scale far
exceeds the particle size of the medium but which is unresolved by the
imaging system.

Several approaches have been proposed to account for the photo-
metric effect of macroscopic roughness of planetary surfaces, falling
broadly into two categories: forward modeling and inverse modeling.
Forward models attempt to describe the observed reflectance character-
istics of a surface in terms of a roughness metric. Some of these models
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employ well defined structures, such as crater shaped depressions or
holes (Van Diggelen, 1958; Hämin-Anttila et al., 1965; Veverka and
Wasserman, 1972; Lumme and Bowell, 1981a,b) whereas others em-
ploy statistical quantities such as RMS heights or slopes (Hapke, 1984;
Despan et al., 1998, 1999) or a fractal measure (Shepard and Campbell,
1998). An alternative approach is to inverse model the roughness based
on empirical observations without utilizing a detailed forward model of
rough surface reflectance. For example, Mushkin and Gillespie (2006)
proposes a ‘‘two look’’ method in which an area is imaged under
different illumination and/or emergence directions and the difference
in shadow fraction of each pixel is interpreted as a proxy for surface
roughness. Alternatively, Cuzzi et al. (2017) presents an approach
wherein the shape of the observed phase curve of an object is used
to infer a shadowing parameter. This parameter is then used to correct
for the effect of shadowing on the object’s apparent spherical albedo.
Further research is needed to investigate the relative performance of
these inverse modeling strategies with respect to forward modeling.
Perhaps they may be viewed as complementary.

The most widely used model for the photometric effect of macro-
scopic roughness of planetary bodies was introduced in Hapke (1984).
This model forms one component of Hapke’s overall photometric model
of soil reflectance (Hapke, 2012b). In his approach, the slope of an
arbitrary point on the surface ϑ is modeled as a random variable

ith probability density function 𝑎(ϑ). His roughness correction treats
the bidirectional reflectance of the macroscopically smooth surface as
known. It is assumed that the relevant facet size far exceeds the particle
size, such that the bidirectional reflectance of each facet is equal to
that of the macroscopically smooth surface. He then estimates the
rough surface bidirectional reflectance as the product of the macro-
scopically smooth surface reflectance, at an effective incidence angle
and effective emergence angle, and a shadowing function. The model
is parameterized by the quantity ϑ. Several attempts have been made
to implement and validate Hapke’s roughness model in the laboratory,
in observations of terrestrial and extraterrestrial terrains, and using
computer simulations. In Helfenstein (1988), computer generated im-
agery of cratered surfaces were used to compare the photometrically
determined value of ϑ to its true value. The results were found to
e generally consistent with the predictions of Hapke’s roughness cor-
ection, but with lower accuracy reported at high illumination angles
nd high phase angles. Roughness statistics of the lunar surface were
ssessed in Helfenstein and Shepard (1999) using stereophotogram-
etry and using Hapke’s roughness correction. It was found that the
ajority of photometrically detectable roughness occurred at length

cales between 0.1 mm and 8 cm for these surfaces. The parameters
f Hapke’s photometric model, including the roughness parameter ϑ,
ere inverted from surface images of Mars obtained by the Spirit and
pportunity rovers (Johnson et al., 2006a,b), from the High Resolution
tereo Camera (HRSC) (Jehl et al., 2008; Pinet et al., 2014; Gwinner
t al., 2016), and from the Compact Reconnaissance Imaging Spectrom-
ter (CRISM) (Fernando et al., 2013, 2015). A high spatial resolution
nversion of Hapke’s photometric model was also performed on the
avoisier lunar crater using the Advanced Moon Micro-Imager Experi-
ent (AMIE) camera in Souchon et al. (2013). Most recently, Hapke’s
hotometric model was used to measure ϑ of dwarf planets and large

Kuiper belt objects using the New Horizons spacecraft (Verbiscer et al.,
2022). However, no in-situ or stereophotogrammetric measurement
of roughness was performed to quantitatively validate the inversion
results in any of these studies. The ϑ parameter has also been inverted
from laboratory measurements of bidirectional reflectance of prepared
surfaces. In Souchon et al. (2011), granular volcanic sand samples were
prepared by gently shaking trays of material to create level surfaces.
The samples were not pressed or scraped, however, such that the sur-
faces remained macroscopically rough. Hapke’s full photometric model
was then inverted using a genetic algorithm to obtain ϑ. However,
independent measurements of ϑ were not performed in this study, so
the inversion results could not be quantitatively validated. In Badura
2

f

and Bachmann (2019), macroscopically rough beach sand surfaces were
prepared in the laboratory, and ϑ was obtained both via inversion of
Hapke’s photometric model and via stereophotogrammetry. Even for
the surfaces that met the underlying model assumptions, the model
exhibited large errors (in excess of 40%) at high illumination zenith
angles and high phase angles. In Labarre et al. (2017, 2019), the macro-
scopic roughness model was applied to airborne and satellite imagery
of terrestrial volcanic terrains. The model’s performance was generally
better at moderately high albedos and relatively smooth surfaces. How-
ever, a systematic underestimation of roughness was observed at higher
values of ϑ. As noted by the authors, many of the natural surfaces
that they examined, such as slabs, hollows, and fractures in lava fields,
had complex structures that are not well modeled by the assumed
azimuthally symmetric form of the probability density function 𝑎(ϑ) in
Hapke’s model.

One of the challenges with assessing Hapke’s roughness model is
that the length scale and physical meaning of ϑ is ambiguous. In Helfen-
stein (1988), it is suggested that ϑ should be viewed as an integral
quantity for roughness scales up to the resolution of the imaging
system. Alternatively, in Shepard and Campbell (1998), it is suggested
that the most important roughness scale is the smallest scale over which
shadows still exist, i.e. over which shadows are not filled in by multi-
facet scattering from neighboring portions of the surface. Laboratory
measurements conducted in Cord et al. (2003, 2005), analysis of the
lunar surface in Helfenstein and Shepard (1999), and analysis of ter-
restrial volcanic terrains in Labarre et al. (2017, 2019) suggest that
the photometrically dominant roughness scale ranges anywhere from
the sub-millimeter to centimeter scale. Due to the constraints of our
laboratory setup, the surfaces measured in this paper include roughness
at only a single macroscopic length scale: 4 mm correlation length.
Therefore, we are not in a position to comment on whether ϑ should
be interpreted at any particular length scale. We consider the proper
length scale interpretation of ϑ of actual planetary bodies to be an
open question. Rather, our goal is to compare our proposed model
against Hapke’s for a fixed, well controlled, macroscopic roughness
scale to assess their relative performance. For roughness to be consid-
ered macroscopic, the roughness length scale must significantly exceed
the particle size. This is the length scale for which Hapke originally
derived his macroscopic roughness correction, and is therefore the scale
at which it is most appropriate to test his model.

Several authors have suggested that the primary shortcoming in
Hapke’s macroscopic roughness correction is the lack of multi-facet
scattering, which is particularly important for rough, high albedo sur-
faces (Buratti and Veverka, 1985; Shepard and Campbell, 1998; Cord
et al., 2003, 2004). Hapke himself noted this, and proposed a modifica-
tion to the model in Hapke (2012b) wherein the effective photometric
ϑ is decreased in proportion to the material’s diffusive reflectance.
The assumption is that multi-facet scattering partially ‘‘fills in’’ the
shadowed regions, creating the appearance of a smoother surface.
However, to our knowledge, this modification was not based on any
measurements and has never been tested. Our measurements indicate
that the ‘‘filling in’’ of shadows is only part of the story. As will be
shown, multi-facet scattering increases the scattered radiance from all
facets (whether they are in shadow or not) in a way that is roughly
Lambertian over a substantial portion of the hemisphere. This effect
can be a significant contribution to the total scattered radiance even
at nadir illumination, when there are no shadows at all. An additional
drawback of Hapke’s roughness correction is an analytical issue that
seems to have gone unnoticed in the literature: the parameter identified
as ‘‘ϑ’’ is not actually equal to the mean value of ϑ for the probability
ensity function 𝑎(ϑ) specified in his model. The two quantities dif-
er by a factor of approximately π∕2 (see Sections 3 and 4.2). This
ssue may partially account for the disparity between the model and
easurements in past studies.

In this paper, we perform a rigorous assessment of Hapke’s macro-
copic roughness correction (including his later modification for multi-
acet scattering) and propose an alternative that includes a more exact
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Fig. 1. Geometry of rough surface scattering.

treatment of single-facet scattering and an empirical approximation
of multi-facet scattering. We begin in Section 2 with the definition
of bidirectional reflectance for a rough surface based on fundamental
radiometry. In Section 3, we discuss Hapke’s macroscopic roughness
correction in detail, including the analytical issues associated with his
choice of probability density function for the facet slope. In Section 4,
we derive the correct form of the probability density function and use
it to derive an expression for the single-facet scattering component
of the rough surface bidirectional reflectance. We validate the single-
facet scattering component by performing Monte Carlo simulations. In
Section 5, we present the details of our experimental measurements of
rough mineral surface reflectance using 3D printed molds with known
roughness statistics and a robotic spectro-gonio-radiometer. We derive
an empirical model for multi-facet scattering from these measurements.
In Section 6, we compare our proposed model with Hapke’s and show
in detail how the macroscopic roughness of the surface affects the
bidirectional reflectance across the hemisphere. Section 7 provides
concluding remarks.

2. Bidirectional reflectance of a rough surface

Consider a surface facet whose geometry is depicted in Fig. 1.
Incoming collimated irradiance 𝐸 strikes the surface and radiance 𝐿
is scattered from the surface to a detector. Angles 𝑖 and 𝑒 are the
zenith angles of the incidence and emergence directions with respect
to the vertical �̂�, while angles ι and ε are the zenith angles with respect
to the facet normal �̂�. The azimuth angle between the incidence and
emergence directions is ψ. The zenith and azimuth angles of the facet
normal are ϑ and φ respectively. These angles are related by the law of
cosines for spherical triangles:

cos ι = cos 𝑖 cos ϑ + sin 𝑖 sin ϑ cosφ (1a)

cos ε = cos 𝑒 cos ϑ + sin 𝑒 sin ϑ cos(ψ − φ) (1b)

The phase angle 𝑔 is the angle between the incidence and emergence
directions, which is the same in both the untilted and tilted coordinate
systems. It may be expressed as

cos 𝑔 = cos 𝑖 cos 𝑒 + sin 𝑖 sin 𝑒 cosψ (2)

The bidirectional reflectance of a surface, denoted by 𝑟, is defined
as the ratio of scattered radiance in the emergence direction 𝑒 to the
incident collimated irradiance in the plane orthogonal to the direction
of incidence 𝑖 (Hapke, 2012b). For a tilted facet of differential area
3

𝑑𝐴𝑡, we may write the bidirectional reflectance in the tilted coordinate
system as

𝑟(ι, ε, 𝑔) = 1
𝐸

𝑑2𝛷
𝑑𝛺𝑑𝐴𝑡 cos ε

(3)

where 𝑑𝛷 is the differential flux scattered by the facet and 𝑑𝛺 is
the differential solid angle subtended by the detector. The tilted area
𝑑𝐴𝑡 may be written in terms of the underlying horizontal area in the
𝑥𝑦-plane as

𝑑𝐴𝑡 = 𝑑𝐴 sec ϑ (4)

Therefore, the total radiant intensity scattered by single-facet scattering
events is

𝐼 single = 𝐸∬𝐴𝑖𝑣

𝑟(ι, ε, 𝑔) cos ε sec ϑ 𝑑𝐴 (5)

where 𝐴𝑖𝑣 is the portion of the surface that is both illuminated and
visible. The projected area subtended by the rough surface from the
perspective of the detector is 𝐴 cos 𝑒, and so the total radiance scattered
by single-facet scattering events is

𝐿 single =
𝐼 single

𝐴 cos 𝑒
= 𝐸 1

𝐴 ∬𝐴𝑖𝑣

𝑟(ι, ε, 𝑔) cos ε
cos 𝑒

sec ϑ 𝑑𝐴 (6)

In Hapke’s original model for macroscopic roughness, only the radiance
due to single-facet scattering events is accounted for. However, our
measurements show that multi-facet scattering is a significant contrib-
utor to the total radiance, especially at high albedo and when the
illumination direction is close to nadir. Let 𝑟 single and 𝑟 multi denote the
rough surface bidirectional reflectance due to single-facet scattering
and multi-facet scattering, respectively. The complete bidirectional
reflectance of the rough surface can therefore be defined as

𝑟(𝑖, 𝑒, 𝑔) = 𝑟 single + 𝑟 multi =
1
𝐴 ∬𝐴𝑖𝑣

𝑟(ι, ε, 𝑔) cos ε
cos 𝑒

sec ϑ 𝑑𝐴 + 𝑟 multi (7)

3. Hapke’s macroscopic roughness correction

In his derivation, Hapke begins by introducing the following as-
sumptions:

1. The roughness scale is large enough such that geometric optics
is valid.

2. The rough surface is comprised of facets whose physical size far
exceeds the mean particle size.

3. The slope distribution function 𝑎(ϑ), which describes the prob-
ability density function of the facet normal zenith angle ϑ, is
independent of azimuth φ. Surfaces with a preferred orientation
are not considered.

4. The slope distribution function is assumed to have the form

𝑎(ϑ) = 2
π tan2 ϑ

sin ϑ sec2 ϑ exp
[

− tan2 ϑ
π tan2 ϑ

]

(8)

where the roughness parameter ϑ is defined by

ϑ = tan−1
[

2
π ∫

π∕2

0
𝑎(ϑ) tan ϑ 𝑑ϑ

]

(9)

and the probability density function is normalized with

∫

π∕2

0
𝑎(ϑ) 𝑑ϑ = 1 (10)

5. The parameter ϑ is assumed to be small. In particular, any Taylor
expansion terms involving order ϑ3 and higher are neglected.

Using the above assumptions, Hapke derives an approximate analyt-
ical expression for the bidirectional reflectance of a rough surface in
terms of ϑ. In particular, the rough surface bidirectional reflectance is
expressed as the smooth surface reflectance at an effective incidence
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Fig. 2. Area under probability density function 𝑎(ϑ) as a function of ϑ.
angle 𝑖𝑒 and effective emergence angle 𝑒𝑒 multiplied by a shadowing
term. His expression, neglecting multi-facet scattering, is given by

𝑟 Hapke, single(𝑖, 𝑒, 𝑔, ϑ) = 𝑟
(

𝑖𝑒, 𝑒𝑒, 𝑔
)

𝑆(𝑖, 𝑒, 𝑔, ϑ) (11)

where effective angles 𝑖𝑒 and 𝑒𝑒 are functions of 𝑖, 𝑒, ψ, and ϑ as outlined
in the Appendix. In an attempt to model the effects of multi-facet
scattering, Hapke proposed the following modification:

𝑟 Hapke, modif ied(𝑖, 𝑒, 𝑔, ϑ) = 𝑟 Hapke, single

(

𝑖, 𝑒, 𝑔, (1 − 𝑟0)ϑ
)

(12)

where 𝑟0 is the diffusive reflectance of the medium (Hapke, 2012b). His
reasoning was that multi-facet scattering would effectively reduce the
photometric effects of roughness, and that this reduction would depend
non-linearly on the material’s albedo. However, to our knowledge this
modification was not based on any measurements and has never been
tested until now. A link to our Python implementation of the original
and modified model is included in Section ‘‘Data Availability’’.

As noted in the introduction, there appear to be analytical issues
with Hapke’s roughness correction that seem to have gone unnoticed
in the literature. As defined in Eq. (9), the parameter identified as ‘‘ϑ’’
is not actually equal to the mean value of a random variable ϑ whose
probability density function is 𝑎(ϑ). This can be easily shown by taking
the limit of the distribution as the surface becomes arbitrarily smooth.
As ϑ → 0, the distribution of ϑ also tends to zero, and so we have
sin ϑ ≈ ϑ and sec ϑ ≈ 1. This gives

lim
ϑ→0

𝑎(ϑ) = π

2
ϑ

(

π

2
tan ϑ

)2
exp

⎡

⎢

⎢

⎢

⎣

−π
4

⎛

⎜

⎜

⎝

ϑ
π

2
tan ϑ

⎞

⎟

⎟

⎠

2
⎤

⎥

⎥

⎥

⎦

(13)

which is a Rayleigh distribution with mean (π∕2) tan ϑ. This means that
the true mean value of the distribution, which we denote as ⟨ϑ⟩, differs
from ‘‘ϑ’’ by a factor of approximately π∕2. Therefore, research efforts
that have tried to measure ϑ directly have potentially misapplied the
model by assuming erroneously that ϑ in Hapke’s model is equal to the
mean value of the surface’s slope angle.

Furthermore, the normalization condition given by Eq. (10) is only
approximately correct for small values of ϑ. As shown in Fig. 2, even
for moderately rough surfaces, the area under 𝑎(ϑ) is significantly less
than unity and therefore does not meet the requirement of a probability
density function.

In addition to the issues with the slope distribution function 𝑎(ϑ),
it is not clear why the roughness correction should take the form
given by Eq. (11), i.e. that the rough surface reflectance should be the
product of the smooth surface reflectance at an effective orientation
and a shadowing function. As described in Section 2, the roughness of
a surface causes facets at a variety of incidence and emergence angles to
be presented to the illumination source and detector simultaneously. To
4

find the radiance reaching the detector, the contribution of each facet
needs to be accounted for at each tilt angle, weighted by how likely a
facet is to have a particular tilt orientation, how much projected area
that facet has with respect to the detector, and how likely a facet is
to be shadowed or obscured by other facets. The derivation of such an
expression is presented in the next section.

4. Proposed model derivation

In this section, a complete derivation of our proposed macroscopic
roughness correction is presented. We begin by listing all of the sim-
plifying assumptions. It should be noted that these assumptions are
no more restrictive than the assumptions made in Hapke’s correction.
However, since our statistical model is described in terms of autocor-
relation functions, some additional discussion of the assumptions and
their implications is warranted. We make the following assumptions:

1. The surface can be described statistically by a wide sense sta-
tionary random process, i.e. the autocorrelation function is not
spatially variant. Of course, in any remote sensing imagery,
all aspects of the scene – such as albedo, surface roughness,
chemical composition, grain size, etc. – are spatially variant.
Therefore, when such a scene is imaged, it is understood that
the radiance detected in each pixel represents the average contri-
bution across the corresponding area on the surface. Therefore,
we do not assume that the surface autocorrelation function is
invariant across the entire scene, since this is never the case.
However, we do assume that it is invariant within the area
corresponding to a single pixel of the imaging system.

2. The surface autocorrelation function is not directionally depen-
dent. This is a more restrictive assumption and is less likely to
be satisfied in practice. Many natural surfaces have a ridged
structure with a preferred orientation. Such surfaces cannot be
described by an autocorrelation function that is the same in ev-
ery direction. However, it should be noted that this assumption
is equivalent to the one made by Hapke that 𝑎(ϑ) is independent
of azimuth angle φ.

3. The height of an arbitrary point on the surface is normally
distributed. The reason for this assumption is that jointly normal
random variables exhibit certain properties that simplify their
analysis, as will be shown in this section. Virtually all of the
roughness corrections and shadowing functions in the literature
make this assumption for this reason. Studies of the lunar surface
using stereophotogrammetry have indicated that the surface
elevation is approximately normally distributed (Lumme et al.,
1985; Helfenstein and Shepard, 1999).
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𝑛

Fig. 3. Random variables 𝑧0, 𝑧1, and 𝑧2 representing three points on the rough surface
viewed from above. The positive 𝑧-axis points out of the page. Angles ϕ𝑖 and ϕ𝑒 are
the azimuth angles of the illumination source and detector projected onto the 𝑥𝑦-plane.

4. The autocorrelation function is twice differentiable at the ori-
gin. As will be shown, this is equivalent to requiring that an
RMS slope exists. It should be noted that the autocorrelation
function need not take any particular form, so long as it is not
directionally dependent. In practice, the autocorrelation function
need not be measured directly anyway. Our proposed roughness
correction will be shown to depend only on the RMS slope along
a linear transect, which is a much easier quantity to measure. In
general, the RMS slope of a surface depends on the length scale
over which it is measured (Shepard and Campbell, 1998). In
this paper, the correlation length of the rough surfaces is 4 mm,
which greatly exceeds the particle size for the materials used in
this study (see Section 5), and therefore meets the assumptions
of the facet scale as originally described by Hapke.

4.1. Slope distribution function

Given this set of assumptions, our first task is to rigorously derive
the probability density function of the facet slope. Consider a set of
three points on a rough surface viewed from above as depicted by
Fig. 3. Point 0 lies at the origin, point 1 lies along the 𝑥-axis, and point
2 lies along the 𝑦-axis (the positive 𝑧-axis points out of the page). The
azimuth angles of the illumination source and detector projected onto
the 𝑥𝑦-plane are denoted by ϕ𝑖 and ϕ𝑒, respectively.

We model the heights of the three points 𝑧 = (𝑧0, 𝑧1, 𝑧2) as jointly
normally distributed random variables with zero mean, variance σ2

𝑧,
and autocorrelation function ρ(𝑟). The horizontal distance from point 0
to point 1, and from point 0 to point 2, is 𝛥𝑟. The horizontal distance
from point 1 to point 2 is

√

2𝛥𝑟. Therefore, for autocorrelation function
ρ(𝑟), the covariance matrix describing 𝑧 is

𝛴𝑧 = σ2
𝑧

⎡

⎢

⎢

⎣

1 𝑎 𝑎
𝑎 1 𝑏
𝑎 𝑏 1

⎤

⎥

⎥

⎦

(14)

where 𝑎 = ρ(𝛥𝑟) and 𝑏 = ρ
(
√

2𝛥𝑟
)

are the correlations between the
three heights. The joint probability density function of 𝑧 can therefore
be written as

𝑓𝑧(𝑧0, 𝑧1, 𝑧2) =
1

√

(2π)3 |
|

𝛴𝑧
|

|

exp
[

−1
2
𝑧⊤𝛴−1

𝑧 𝑧
]

(15)

Define the random variables 𝑚𝑥 = (𝑧1 − 𝑧0)∕𝛥𝑟 and 𝑚𝑦 = (𝑧2 − 𝑧0)∕𝛥𝑟,
which are the slopes of the surface along the positive 𝑥-axis and 𝑦-axis
5

respectively. The joint probability density function of �⃗� = (𝑚𝑥, 𝑚𝑦) can
be found as

𝑓�⃗�(𝑚𝑥, 𝑚𝑦) = ∫

+∞

−∞
𝑓𝑧(𝑧0, 𝑚𝑥𝛥𝑟 + 𝑧0, 𝑚𝑦𝛥𝑟 + 𝑧0) 𝑑𝑧0 (16)

This integral may be evaluated by computing the determinant and
inverse of 𝛴𝑧 and employing the following identity:

∫

+∞

−∞
exp

[

−α𝑥2 − β𝑥
]

𝑑𝑥 =
√

π

α
exp

[

β2

4α

]

(17)

which yields the fact that 𝑚𝑥 and 𝑚𝑦 are jointly normally distributed
with zero mean and covariance

𝛴𝑚 =
σ2
𝑧

𝛥𝑟2

[

2(1 − 𝑎) 1 + 𝑏 − 2𝑎
1 + 𝑏 − 2𝑎 2(1 − 𝑎)

]

(18)

Next, we take the limit of 𝑓�⃗�(𝑚𝑥, 𝑚𝑦) as 𝛥𝑟 → 0. To do this, we
apply L‘Hopital’s rule twice and utilize the following properties of the
autocorrelation function ρ(𝑟):

ρ′(0) = 0 (19)

ρ′′(0) = −𝑀2∕σ2
𝑧 (20)

where 𝑀 is the RMS slope along any transect of the surface (Smith,
1967). Using these substitutions, the joint distribution of 𝑚𝑥 and 𝑚𝑦
can be written as

𝑓�⃗�(𝑚𝑥, 𝑚𝑦) =
1

2π𝑀2
exp

[

− 1
2𝑀2

(

𝑚2
𝑥 + 𝑚2

𝑦

)]

(21)

This indicates that the slopes along the 𝑥 and 𝑦 axes are independent
normally distributed random variables with zero mean and variance
𝑀2. The normal vector �̂� can be expressed in terms of 𝑚𝑥 and 𝑚𝑦 as

̂ = 1
√

1 + 𝑚2
𝑥 + 𝑚2

𝑦

(

−𝑚𝑥, −𝑚𝑦, 1
)

(22)

Taking the dot product of the normal vector and the vertical gives

cos ϑ = �̂� ⋅ �̂� = 1
√

1 + 𝑚2
𝑥 + 𝑚2

𝑦

(23)

Next, define the random variable 𝑝 = 𝑚2
𝑥 + 𝑚2

𝑦. To find the probability
density function of 𝑝, we first define �̂�𝑥 = 𝑚𝑥∕𝑀 and �̂�𝑦 = 𝑚𝑦∕𝑀 and
define �̂� = �̂�2

𝑥+�̂�2
𝑦. Since �̂�𝑥 and �̂�𝑦 are standard independent normally

distributed random variables (with means of zero and variances of
unity), the probability density function of �̂� is a chi-squared distribution
with two degrees of freedom:

𝑓�̂�(�̂�) =
1
2
exp

[

−
�̂�
2

]

(24)

We note that 𝑝 = 𝑀2�̂�, so the distribution 𝑓𝑝(𝑝) can be found via the
method of transformations and is expressed as

𝑓𝑝(𝑝) =
1

2𝑀2
exp

[

−
𝑝

2𝑀2

]

(25)

Next, define the random variable 𝑞 = 1
/

√

𝑝 + 1 . Its probability density

function can be found by employing the method of transformations a
second time:

𝑓𝑞(𝑞) =
1

𝑀2𝑞3
exp

[

−
1 − 𝑞2

2𝑀2𝑞2

]

(26)

We can express the facet normal zenith angle as ϑ = cos−1 𝑞. By
employing the method of transformations one last time, we arrive at
the desired probability density function:

𝑓ϑ(ϑ) =
1 tan ϑ sec2 ϑ exp

[

−1 ( tan ϑ)2]

(27)

𝑀2 2 𝑀
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Fig. 4. Comparison of exact slope angular distribution function 𝑓ϑ(ϑ) (solid line) with Hapke’s approximation 𝑎(ϑ) (dotted line) for various values of RMS slope 𝑀 .
4.2. Comparison with 𝑎(ϑ)

Next, we compare the exact distribution 𝑓ϑ(ϑ) derived above with
the approximate distribution 𝑎(ϑ) used by Hapke. To do this, we
take the limit of both distributions as the surface becomes arbitrarily
smooth. This gives

lim
𝑀→0

𝑓ϑ(ϑ) =
π

2
ϑ

(√

π

2
𝑀

)2
exp

⎡

⎢

⎢

⎢

⎢

⎣

−π
4

⎛

⎜

⎜

⎜

⎜

⎝

ϑ
√

π

2
𝑀

⎞

⎟

⎟

⎟

⎟

⎠

2
⎤

⎥

⎥

⎥

⎥

⎦

(28)

which is a Rayleigh distribution with mean
√

π∕2𝑀 . As was shown
in Eq. (13), 𝑎(ϑ) also approaches a Rayleigh distribution, with mean
π∕2 tan ϑ. Since both 𝑎(ϑ) and 𝑓ϑ(ϑ) approach Rayleigh distributions
in the limiting case of an arbitrarily smooth surface, we can find a
relationship between Hapke’s roughness parameter ϑ and the RMS
slope 𝑀 by ensuring the distributions approach one another. Setting
Eq.’s (13) and (28) equal to each other gives

ϑ = tan−1
(
√

2
π
𝑀

)

(29)

This relationship allows a direct comparison between the roughness
correction described in this paper (given in terms of 𝑀) and Hapke’s
roughness correction (given in terms of his parameter ϑ). It should
again be noted that the parameter identified by Hapke as ϑ is not equal
to the mean value of ϑ as defined by 𝑎(ϑ). Indeed, for small ϑ, we
have ⟨ϑ⟩ ≈ (π∕2) tan ϑ as shown by Eq. (13). Researchers should be
aware of this when comparing experimentally measured slopes with
the predictions of Hapke’s roughness correction. For this reason, we
advocate using the RMS slope 𝑀 as the roughness parameter to avoid
ambiguity in notation.

The difference between the exact distribution 𝑓ϑ(ϑ) and Hapke’s
approximation 𝑎(ϑ) is shown in Fig. 4. As seen in the figure, the
approximation 𝑎(ϑ) performs well for small values of 𝑀 but is less
accurate for larger values of 𝑀 . As 𝑀 increases, and therefore as ϑ

increases by Eq. (29), the area under 𝑎(ϑ) decreases from unity, which
is consistent with Fig. 2.

4.3. Proposed roughness correction

Now that the correct slope distribution function has been identified,
we may utilize it to evaluate the rough surface bidirectional reflectance,
which was defined by Eq. (7). However, the function 𝑓ϑ(ϑ) will not be
used directly. Rather, we will start with the joint probability density
function for 𝑚𝑥 and 𝑚𝑦 (the slopes along the positive 𝑥 and 𝑦 axes) given
by Eq. (21), and then express angles ϑ, ι, and ε as random variables
6

defined in terms of 𝑚𝑥 and 𝑚𝑦. As a first step, let us define 𝑚𝑖 and 𝑚𝑒,
the slope of the surface in the direction of the illumination source and
detector, projected onto the 𝑥𝑦-plane. These slopes are related to 𝑚𝑥
and 𝑚𝑦 by

𝑚𝑖 = cosϕ𝑖 𝑚𝑥 + sinϕ𝑖 𝑚𝑦 (30a)

𝑚𝑒 = cosϕ𝑒 𝑚𝑥 + sinϕ𝑒 𝑚𝑦 (30b)

The three tilt angles can then be expressed as

cos ϑ = �̂� ⋅ �̂� = 1
√

1 + 𝑚2
𝑥 + 𝑚2

𝑦

(31a)

cos ι = �̂� ⋅ 𝑖 = (cos 𝑖 − 𝑚𝑖 sin 𝑖) cos ϑ (31b)

cos ε = �̂� ⋅ 𝑒 = (cos 𝑒 − 𝑚𝑒 sin 𝑒) cos ϑ (31c)

Since ϑ, ι, and ε are now modeled as random variables, we replace the
deterministic area-averaged integral in Eq. (7) by the expected value:

𝑟(𝑖, 𝑒, 𝑔) = ∫

+∞

−∞ ∫

+∞

−∞
𝑃 (¬𝑠) 𝑟(ι, ε, 𝑔) cos ε

cos 𝑒
sec ϑ

× 𝑓�⃗�(𝑚𝑥, 𝑚𝑦) 𝑑𝑚𝑥 𝑑𝑚𝑦 + 𝑟 multi (32)

where 𝑃 (¬𝑠) is the probability that a facet with slopes 𝑚𝑥 and 𝑚𝑦 is
not in shadow. Following Hapke, we consider two types of shadows:
tilt shadows and projected shadows. A facet is in tilt shadow if its
normal vector �̂� makes an angle of more than 90◦ with the direction of
incidence 𝑖 or with the direction of emergence 𝑒. We may equivalently
express this condition in terms of the slopes in the incidence and
emergence directions: if 𝑚𝑖 > cot 𝑖 or 𝑚𝑒 > cot 𝑒, then the facet is in tilt
shadow. A facet is in projected shadow if some portion of the surface
obstructs the view from the facet to the source or to the detector. Let
us rewrite 𝑃 (¬𝑠) explicitly in terms of tilt and projected shadows:

𝑃 (¬𝑠) = 𝑃 (¬𝑝 ∩ ¬𝑡) (33)

= 𝑃 (¬𝑝 | ¬𝑡)𝑃 (¬𝑡) (34)

where ¬𝑝 denotes the absence of projected shadow and ¬𝑡 denotes the
absence of tilt shadow. Following Hapke and several other authors, we
assume that facets that are not in tilt shadow have a probability of
being in projected shadow that is independent of their slopes (Saunders,
1967; Smith, 1967; Hapke, 1984; Heitz et al., 2013). This means that
𝑃 (¬𝑝 | ¬𝑡) can be taken outside the integral in Eq. (32). However, the
probability of being in tilt shadow depends directly on the facet slope,
so 𝑃 (¬𝑡) cannot be taken outside the integral. Instead, we can directly
account for tilt shadowing by using step functions. Let 𝑢(𝑥) denote the
unit step function, i.e.

𝑢(𝑥) =
{

1 𝑥 ≥ 0 (35)

0 𝑥 < 0
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We can then define the probability of not being in tilt shadow as

𝑃 (¬𝑡) = 𝑢(cot 𝑖 − 𝑚𝑖) 𝑢(cot 𝑒 − 𝑚𝑒) (36)

An estimate of 𝑃 (¬𝑝 | ¬𝑡), denoted by 𝑃 (¬𝑝 | ¬𝑡), was presented in Heitz
et al. (2013) and is adopted in this paper. Unlike other models in the
literature, this model is fully bistatic and accounts for the correlation
effect: namely the fact that when ψ is close to 0◦, 𝑚𝑖 and 𝑚𝑒 are
strongly correlated. It should be noted that the original publication of
the model contained a few typesetting errors. These errors have been
corrected and the equations have been re-written below in terms of
the notation used in this paper. Their model defines an estimate of
projected shadowing via the term 𝑃 (¬𝑝 ∣ ¬𝑡) according to:

𝑃 (¬𝑝 ∣ ¬𝑡) = 1
1 + 𝛬(ν𝐴) + 𝑅𝛬(ν𝐵)

(37a)

𝛬(ν) = 1
2
√

πν
exp

[

−ν2
]

− 1
2

erfc(ν) (37b)

ν𝐴 =
cot (max {𝑖, 𝑒})

√

2𝑀
(37c)

ν𝐵 =
cot (min {𝑖, 𝑒})

√

2𝑀
(37d)

𝑅 =

⎧

⎪

⎨

⎪

⎩

ln
(

1 + 𝑎ψ𝑏) ∕ ln
[

1 + 𝑎
(

π

2

)𝑏
]

ψ ∈
[

0, π
2

)

1 ψ ∈
[

π

2
, π

]
(37e)

𝑎 = 0.17∕ |
|

ν𝐵 − ν𝐴||
10.49 (37f)

𝑏 = 8.85 (37g)

In Heitz et al. (2013), validation of Eq. (37) was performed using Monte
Carlo simulation which showed very good agreement with their model.
We have performed additional Monte Carlo simulations (presented in
Section 5.3) which corroborate these findings. As a final simplification,
we may utilize Eq. (31) to rewrite the trigonometric terms in the
integral in Eq. (32) as:
cos ε
cos 𝑒

sec ϑ = 1 − 𝑚𝑒 tan 𝑒 (38)

This expression has a clear physical intuition: it is the ratio between the
projected area subtended by a tilted facet and the projected area that
would be subtended if the facet were flat. In this paper we refer to it as
the projected area factor. We can now write the single-facet scattering
portion of our proposed roughness correction as

𝑟 Proposed, single(𝑖, 𝑒, 𝑔) = 𝑃 (¬𝑝 ∣ ¬𝑡)∫

+∞

−∞ ∫

+∞

−∞
𝑟(ι, ε, 𝑔) (1 − 𝑚𝑒 tan 𝑒)

× 𝑃 (¬𝑡) 𝑓�⃗�(𝑚𝑥, 𝑚𝑦) 𝑑𝑚𝑥 𝑑𝑚𝑦 (39)

with 𝑃 (¬𝑝 | ¬𝑡) given by Eq. (37), angles ϑ, ι, and ε given in terms
of 𝑚𝑥 and 𝑚𝑦 in Eqs. (30) and (31), 𝑃 (¬𝑡) given by Eq. (36), and
𝑓�⃗�(𝑚𝑥, 𝑚𝑦) given by Eq. (21). The multi-facet scattering term is dis-
cussed in the next section. Since our roughness correction involves
computing an integral, some additional discussion on computational
considerations is warranted. We begin by noting that all of the terms
in the integrand in Eq. (39) are well behaved over all 𝑚𝑥 and 𝑚𝑦, with
no asymptotes or discontinuities (other than those introduced by the
step functions, which are easily integrable). Since 𝑓�⃗�(𝑚𝑥, 𝑚𝑦) is a 2D
Gaussian distribution centered at the origin, the non-zero extent of
the integrand is limited by the standard deviation 𝑀 . Therefore, the
lower and upper limits of integration may be set to some small multiple
of 𝑀 while retaining very high accuracy. In all of the calculations
presented in this paper, the integral in Eq. (39) was computed using
limits of integration of 𝑚𝑥, 𝑚𝑦 ∈ [−5𝑀, 5𝑀], a uniformly spaced grid
of length 100 in both 𝑚𝑥 and 𝑚𝑦, and trapezoidal rule. With any modern
computer and a precompiled trapezoidal rule implementation (such
as that offered by Python’s Scipy library (Virtanen et al., 2020)) the
roughness correction may be quickly computed without issue. A link to
our Python implementation of the model is included in Section ‘‘Data
Availability’’.
7

Fig. 5. Discrete surface for Monte Carlo simulation: projected view of the surface
from above. The surface consists of a single facet and two transects in the 𝑥𝑦-plane:
one toward the projected illumination source direction and one toward the projected
detector direction. The positive 𝑧-axis points out of the page.

4.4. Monte Carlo simulation

In this section, a numerical Monte Carlo simulation of rough surface
scattering is presented. The purpose of the simulation is to validate the
single-facet scattering portion of our proposed model, 𝑟 Proposed, single. For
a rough surface that satisfies the assumptions presented in the begin-
ning of this section (i.e. wide sense stationary, no preferred orientation,
and normally distributed heights), the only approximation made in the
single-facet scattering portion of the model is the treatment of projected
shadows via the term 𝑃 (¬𝑝 ∣ ¬𝑡). Everything else in 𝑟 Proposed, single follows
directly from the definition of the true single-facet reflectance 𝑟 single
derived from fundamental radiometry in Eq. (7).

Multi-facet scattering is not included in this Monte Carlo simulation;
we address multi-facet scattering later in Section 5.4 when we consider
the residual between our single-facet scattering model and measure-
ments. To numerically model multi-facet scattering would require a
fully three dimensional simulation with iterative ray tracing to simulate
multiple orders of scattering, such as the model presented in Shkuratov
et al. (2005). Such a model would certainly be useful to study multi-
facet scattering more closely, but its development is beyond the scope
of this paper. Instead, we will rely on direct measurements of the rough
surface reflectance to obtain the multi-facet scattering model.

To construct the model, consider the set of discrete points depicted
in Fig. 5. We denote 𝐳 as a randomly generated vector of length
2𝑁 + 2. Points 𝐳0, 𝐳1, and 𝐳2𝑁+1 comprise a set of heights associated
with the simulated facet. Points 𝐳0, … , 𝐳𝑁 define a set of heights for
a transect toward the projected direction of the illumination source,
while points 𝐳0, 𝐳𝑁+1, … , 𝐳2𝑁 represent a set of heights for a transect
toward the projected direction of the detector. Let the distance between
two adjacent points along a transect in the 𝑥𝑦-plane be 𝛥𝑟. The matrix
of the horizontal distances in the 𝑥𝑦-plane between all of these points
may be written as Eq. (40) (Box I), where the matrix 𝐃 is given by

𝐃𝑗𝑘(θ) =
√

𝑗2 + 𝑘2 − 2𝑗𝑘 cos θ (41)

For a Gaussian autocorrelation function with correlation length 𝓁, the
covariance may be written as

Σ𝑗𝑘 = 1
2
𝓁2𝑀2 exp

[

−
(𝐑𝑗𝑘

𝓁

)2]

(42)

The random vector 𝐳 is generated as a set of jointly normally dis-
tributed random variables with zero mean and covariance Σ. Let 𝐙 be
a matrix in which each row is a particular realization of the random
vector 𝐳. Each particular realization of the surface is indexed by 𝑠 ∈
0, 1, … , 𝑆 − 1 . The realizations of random variables ϑ, ι, and ε for
{ }
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⎢

⎢

⎢

⎢
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1 𝐃11(π∕2) 𝐃12(π∕2) ⋯ 𝐃1𝑁 (π∕2) 𝐃11(π∕2 − ψ) 𝐃12(π∕2 − ψ) ⋯ 𝐃1𝑁 (π∕2 − ψ) 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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urface realization 𝑠 are denoted by ϑ𝑠, ι𝑠, and ε𝑠. These angles are
iven by:

os ϑ𝑠 =
𝛥𝑟

√

𝛥𝑟2 + (𝐙𝑠, 1 − 𝐙𝑠, 0)2 + (𝐙𝑠, 2𝑁+1 − 𝐙𝑠, 0)2
(43a)

cos ι𝑠 =
[

cos 𝑖 −
(𝐙𝑠, 1 − 𝐙𝑠, 0

𝛥𝑟

)

sin 𝑖
]

cos ϑ (43b)

cos ε𝑠 =
[

cos 𝑒 −
(𝐙𝑠, 1 − 𝐙𝑠, 0

𝛥𝑟
cosψ +

𝐙𝑠, 2𝑁+1 − 𝐙𝑠 0

𝛥𝑟
sinψ

)

sin 𝑒
]

cos ϑ

(43c)

n these expressions, the first index is the surface realization index 𝑠,
hile the second index refers to the position of the point (0 through
𝑁 + 1) within that surface. For surface 𝑠, the facet is in tilt shadow
f its local illumination or emergence direction is greater than 90◦. We
ay write this condition for surface 𝑠 as

𝑠 =
{

True cos ι𝑠 < 0 or cos ε𝑠 < 0
False else (44)

he facet is in projected shadow if either of the two rays from the origin
o the illumination source or from the origin to the detector intersects
he surface at some point. We may write this condition as

𝑠 =

⎧

⎪

⎨

⎪

⎩

True ∃ 𝑘 ∈ {1, … , 𝑁} | (𝐙𝑠, 0 + 𝑘𝛥𝑟 cot 𝑖) < 𝐙𝑠, 𝑘 or
∃ 𝑘 ∈ {𝑁 + 1, … , 2𝑁} | (𝐙𝑠, 0 + (𝑁 − 𝑘)𝛥𝑟 cot 𝑒) < 𝐙𝑠, 𝑘

False else

(45)

herefore, we may write the shadowing condition of surface realization
as

𝑠 =
{

0 𝑠 or 𝑠
1 else (46)

he exact expression for rough surface single-facet scattering 𝑟 single was
erived in Eq. (7). We simulate this result by replacing the integral over
he surface with a discrete summation over the illuminated and visible
acets. The Monte Carlo model (which includes single-facet scattering
nly) for the rough surface bidirectional reflectance is given by

𝑟 Monte Carlo, single(𝑖, 𝑒, 𝑔) =
1
𝑆

𝑆−1
∑

𝑠=0
𝑠 𝑟(ι𝑠, ε𝑠, 𝑔)

cos ε𝑠
cos 𝑒

sec ϑ𝑠 (47)

n this paper, the Monte Carlo simulations were performed using cor-
elation length 𝓁 = 1. The simulated transects had length 10𝓁 and
iscretization scale 𝛥𝑟 = 𝓁∕20. This gives a value of 𝑁 = 200. For each
iew geometry, the number of independent realizations of the surface
as 𝑆 = 100, 000. A link to our Python implementation of the model is
8

ncluded in Section ‘‘Data Availability’’. a
5. Experimental methods

5.1. Sample preparation

We performed experimental validation of our proposed roughness
correction using two minerals, quartz and olivine. Geotechnical prop-
erties of the two minerals are listed in Table 1. To study the radiometric
effects of surface roughness, we 3D printed 30 cm diameter plastic
molds with randomly generated surfaces. We generated each surface
using correlation length 𝓁 = 4 mm and a Gaussian autocorrelation
function: ρ = exp

[

−(𝑟∕𝓁)2
]

. For the Gaussian autocorrelation function,
he RMS slope can be determined using Eq. (20) as

=
√

2
(σ𝑧

𝓁

)

(48)

We produced four different molds, each with a different RMS height
σ𝑧: 0 mm (smooth), 0.5 mm, 0.75 mm, and 1.0 mm. These σ𝑧 values
correspond with 𝑀 values of 0, 0.177, 0.265, and 0.354 respectively.

fter 3D printing, we coated each mold with a two part epoxy resin
o smooth out the striations left by the printing process. All mineral
amples, including the smooth samples, were prepared using an iden-
ical process, as depicted in Fig. 6. The container is first filled upside
own, with the 3D printed mold forming the base. Next, the container
s sealed and placed on a shaker table. The purpose of this step is to
nsure that all of the small gaps in the mold surfaces are completely
illed with material. After experimenting with different time intervals,
e determined that 5 min was long enough to ensure a well-prepared

urface without stratifying the material grain size. Next, the upper half
f the container is removed and excess material is scraped away. A base
late is then installed and the container is flipped vertically. Finally, the
D printed mold is carefully released, revealing the prepared mineral
urface.

.1.1. Bidirectional reflectance measurement
To measure the bidirectional reflectance of the mineral samples

cross the hemisphere, we utilized the robotic spectro-gonio-radiometer
ystem described in Harms et al. (2017). A photograph of the ex-
erimental setup is included in Fig. 6. This system utilizes an ASD
ieldSpec FR4 spectro-radiometer at wavelengths ranging from 350 nm
o 2500 nm. The robotic arm positions the downward-looking spectro-
adiometer’s foreoptic at emergence angles ranging from nadir to 70◦,

and azimuth angles from 0◦–360◦. A laser range finder ensures that
he foreoptic is pointed at the same position on the sample throughout
ach scan. The illumination zenith angle can be varied from nadir to
0◦. The construction of the robotic arm allows radiance measurements
o be performed at phase angles of 5◦ and greater (smaller phase
ngles will result in the arm shadowing the sample). We used a 3◦

ield-of-view foreoptic with an optical scrambler for all measurements.
he illumination source is a 750 W tungsten halogen source with an

djustable iris and focusing optics to collimate the light and provide a
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Table 1
Geotechnical properties of minerals used in this experiment. Bulk densities and fill factors are measured for minerals prepared
according to Fig. 6.
Mineral ASTM Sieve Particle Bulk Fill

80 120 200 230 Pan Density [g/cm3] Density [g/cm3] Factor

Quartz 0.0 22.9 67.4 5.5 4.2 2.60 ± 0.04 1.585 ± 0.001 0.61 ± 0.01
Olivine 0.3 33.4 40.7 16.4 9.1 3.21 ± 0.05 1.870 ± 0.001 0.58 ± 0.01
Fig. 6. 1. One of the samples during measurement by our robotic spectro-gonio-radiometer system (top left). 2. Zoomed-in view of one of the prepared rough quartz samples (top
right). 3. Sample preparation process diagram (bottom): (i) container is loosely filled with mineral and covered, (ii) container is placed on shaker table for 5 min, (iii) upper half
of container is removed and base plate is installed, (iv) container is flipped vertically and mold removed.
uniform illumination field. With this light source, adequate signal-to-
noise ratio (SNR) was obtained from 500 nm to 2250 nm for the two
minerals.

One of the challenges with measuring the rough mineral samples
is the fact that the surface is not uniform across the sample, as seen
in Fig. 6. The surface height and slope are pseudorandom variables
whose statistics are controlled by each mold’s 3D printing process.
Therefore, the radiance scattered by a given region of the surface is
also a pseudorandom variable. To ensure a representative sample of
radiance was obtained at each measurement geometry, we placed the
mineral sample on a rotating stage whose center was horizontally offset
by three inches from the foreoptic’s field of view. The sample was then
rotated continuously beneath the foreoptic during the measurement
process. At each measurement position on the hemisphere, we recorded
20,000 independent radiance measurements over a duration of 10 min
of rotation. This ensured a representative measurement of the radiance
scattered by the pseudorandom surface.

To calibrate the measurements, after each scan we inserted a
Spectralon™ plaque with NIST-traceable directional-hemispherical re-
flectance in place of the sample at the same distance from the illumi-
nation source and spectro-radiometer foreoptic, and we measured its re-
flected radiance under identical lighting conditions. Rather than assum-
ing that the Spectralon™ plaque is Lambertian, we utilized an empirical
model for the non-Lambertian bidirectional reflectance (Lévesque and
Dissanska, 2016) which is accurate to ≈1% out to 70◦ zenith in
illumination and emergence. This uncertainty was combined with the
uncertainty provided in the Spectralon™ calibration certificate, and was
then propagated through the reflectance processing chain to provide an
overall estimate of the uncertainty of each reflectance measurement.
All of the error bars presented in this paper represent one standard
deviation of uncertainty.
9

5.1.2. Smooth surface characterization
For the purpose of this experiment, it is of paramount importance

that the smooth surface bidirectional reflectance 𝑟(𝑖, 𝑒, 𝑔) be known
with high accuracy across the entire hemisphere. Otherwise, it would
be difficult to discern whether errors in the roughness correction mod-
els are due to the models themselves or to errors in the underlying
smooth surface reflectance measurement. To this end, smooth samples
of each mineral were measured from nadir to 70◦ in illumination and
emergence and from 0◦–360◦ in azimuth, each in 10◦ increments.
Due to the constraints of the robotic arm and illumination setup, the
remaining 20◦ in illumination and emergence zenith angles between
70◦ − 90◦ could not be measured.

One option for filling in these remaining regions would be to fit an
analytical bidirectional reflectance model to the measured data. Such
models include Hapke’s isotropic multiple scattering approximation
(IMSA) (Hapke, 2012b) or its derivatives such as SOILSPECT (Jacque-
moud et al., 1992). However, we found that neither of these models
could fit the measured bidirectional reflectance over the entire hemi-
sphere to the desired accuracy. Since an accurate characterization of
the smooth surface bidirectional reflectance is critical to this study,
another approach was needed.

Therefore, instead of utilizing an analytical model, we estimated the
unmeasured portions of the hemisphere by extrapolating the measure-
ments with low order polynomial fits. We then used this extrapolated
data set to construct a radial basis function (RBF) interpolation so
that 𝑟(𝑖, 𝑒, 𝑔) could be estimated at any angle. In particular, for every
ψ ∈ [0◦, 360◦] and for every 𝑖 ∈ [0◦, 70◦], the reflectance at 𝑒 = 80◦ and
𝑒 = 90◦ was estimated by fitting a parabola to the measurements at
𝑒 = 50◦, 60◦, and 70◦. Then, for every 𝑒 ∈ [0◦, 90◦], the reflectance
at 𝑖 = 80◦ and 𝑖 = 90◦ was estimated by fitting a parabola to the
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Fig. 7. Bidirectional reflectance 𝑟(𝑖, 𝑒, 𝑔) of olivine and quartz at 750 nm when illuminated at 𝑖 = 30◦. The black circle indicates the self-shadowing region of the robotic arm —
quality measurements cannot be taken in this region. The inner seven rings, (𝑒 = 0◦ , 10◦ , 20◦ , 30◦ , 40◦ , 50◦ , 60◦ , 70◦) correspond with direct measurements, while the outer two
rings (𝑒 = 80◦ , 90◦) are obtained via extrapolation.
measurements at 𝑖 = 50◦, 60◦, and 70◦. Finally, the extrapolated
estimates were smoothed along each dimension (𝑖, 𝑒, and ψ) by fitting
a cubic polynomial and replacing the estimates with the polynomial
interpolation. It should be noted that this smoothing operation was
applied only to the extrapolated points, not to the measurements. The
original measurements were not adjusted or smoothed in any way.

The results of the extrapolation/interpolation process for the two
minerals with illumination zenith angle 𝑖 = 30◦ are shown in Fig. 7.
As described above, the reflectance at 𝑒 ≤ 70◦ is measured directly,
while the reflectance at 𝑒 = 80◦ and 𝑒 = 90◦ is extrapolated from
the measurements at each value of ψ. We see in the figure that this
procedure results in a physically reasonable bidirectional reflectance
profile. No obvious visible artifacts have been introduced by the ex-
trapolation process. As seen in the figure, the two minerals exhibit
very different scattering behavior: the olivine is heavily biased toward
forward scattering, whereas the quartz has a much more pronounced
opposition effect.

5.2. Diffusive reflectance estimate

To test Hapke’s modification for multi-facet scattering, the diffusive
reflectance of each mineral must be estimated at each wavelength. For
isotropic scatterers, the diffusive reflectance is defined as

𝑟0, isotropic =
1 − γ
1 + γ

(49)

where γ =
√

1 −𝑤 is the albedo factor and 𝑤 is the single scattering
albedo of the material (Hapke, 2012b). For anisotropic scatterers, the
diffusive reflectance can be written in terms of an effective single
scattering albedo 𝑤∗, given by

𝑤∗ =
1 − β
1 − β𝑤

𝑤 (50)

where β is the hemispherical asymmetry factor (Hapke, 2012b). In
particular, the effective albedo factor is defined as

γ∗ =
√

1 −𝑤∗ =
√

1 −𝑤
1 − β𝑤

(51)

and the diffusive reflectance for the general case of anisotropic scatter-
ers can be written as

𝑟0 =
1 − γ∗

1 + γ∗
(52)

The hemispherical asymmetry factor is a property of the effective single
particle phase function of the medium. It is defined as the average
cosine of the scattering angle: π − 𝑔. For the particular case of a
two parameter Henyey–Greenstein single particle phase function, β =
−𝑏𝑐 (Hapke, 2012a). Therefore, to determine the wavelength dependent
10
diffusive reflectance in the general case of anisotropic scatterers, the
values of 𝑤, 𝑏, and 𝑐 must be estimated at each wavelength. To do
this, we inverted Hapke’s IMSA model using all of our bidirectional
reflectance measurements with phase angles 𝑔 ≥ 30◦, such that the
opposition effect may be neglected. The IMSA model, ignoring the
opposition effect, is written as

𝑟IMSA, no opposition =
𝑤
4π

cos 𝑖
cos 𝑖 + cos 𝑒

[𝑝(𝑔) +𝐻(cos 𝑖)𝐻(cos 𝑒) − 1] (53)

where 𝐻 is the Ambartsumian–Chandrasekhar function and 𝑝(𝑔) is the
single particle phase function (Hapke, 2012b). For the two parame-
ter Henyey–Greenstein function, the single particle phase function is
written as

𝑝(𝑔) = 1 + 𝑐
2

1 − 𝑏2
(

1 − 2𝑏 cos 𝑔 + 𝑏2
)3∕2

+ 1 − 𝑐
2

1 − 𝑏2
(

1 + 2𝑏 cos 𝑔 + 𝑏2
)3∕2

(54)

To perform the inversion, we performed a least squares fit of Eq. (53) to
the measured bidirectional reflectance using the differential evolution
algorithm (Storn and Price, 1997). The results of the inversion are
shown in Fig. 8. It should be noted that in this study, IMSA was used
only to estimate the diffusive reflectance by inverting 𝑤, 𝑏, and 𝑐. The
IMSA inversion was not accurate enough to model the smooth surface
bidirectional reflectance 𝑟(𝑖, 𝑒, 𝑔) across the entire hemisphere to the
accuracy needed for this study, even when the opposition effect terms
were included. Instead, the interpolation/extrapolation process detailed
in the last section was used to characterize 𝑟(𝑖, 𝑒, 𝑔).

5.3. Validation of single-facet scattering model via Monte Carlo simulation

Next, we used the Monte Carlo simulation presented in Section 4.4
to validate the single-facet scattering portion of our proposed model. To
perform the validation, for each rough surface reflectance measurement
geometry, we compared the model 𝑟 Proposed, single with a corresponding
Monte Carlo simulation 𝑟 Monte Carlo, single. As seen in Fig. 9, there is
very good agreement between the single-facet scattering portion of our
proposed model and the Monte Carlo simulation. The only approx-
imation made in the single-facet scattering portion of our model is
the treatment of projected shadowing via the term 𝑃 (¬𝑝 ∣ ¬𝑡) given
in Heitz et al. (2013). Our results shown in Fig. 9 appear to corroborate
their earlier findings that 𝑃 (¬𝑝 ∣ ¬𝑡) is indeed a good model for
the projected shadowing, at least for the roughness scales and view
geometries studied in this paper.

5.4. Multi-facet scattering

Given the very good agreement between the single-facet scattering
portion of our model and the Monte Carlo simulation, it is reason-
able to assume that the residual between the measured rough surface
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Fig. 8. Inversion of single scattering albedo 𝑤, phase function parameters 𝑏 and 𝑐, and the resulting hemispherical asymmetry factor β, effective albedo 𝑤∗, and diffusive reflectance
𝑟0.

Fig. 9. Validation of single-facet scattering portion of our proposed model via Monte Carlo simulation.
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Fig. 10. Measurement residual 𝑟𝑅 for 𝑔 < 90◦ along with our Lambertian approximation as a function of 𝑤∗, cos 𝑖, and 𝑀 while holding the other variables constant. Olivine
measurements are represented by green dots and quartz measurements by blue dots. In the left figure, the residual is plotted for 𝑖 = 30◦ and 𝑀 = 𝑀3. In the center figure, the
residual is plotted for 𝑀 = 𝑀3. In the right figure, the residual is plotted for 𝑖 = 30◦. The best fit value for the fitting parameter is 𝑐L = 0.19. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 11. Measurement residual 𝑟𝑅 for all 𝑔 along with our non-Lambertian approximation. Olivine measurements are represented by green dots and quartz measurements by blue
dots. The best fit value for the non-Lambertian fitting constant is 𝑐NL = 6.5. The multi-facet scattering is approximately Lambertian for phase angles 𝑔 < 90◦ but gradually increases
at higher phase angles. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 12. Validation of multi-facet scattering portion of our proposed model via comparison with measured residual 𝑟𝑅.
reflectance and the single-facet scattering model is due primarily to
multi-facet scattering. In our measurements, we observed that in al-
most every case, the measured reflectance was greater than what was
predicted by the single-facet scattering model. This observation is con-
sistent with the hypothesis that the missing radiance due to multi-facet
scattering is the primary factor affecting the residual.

We found that this residual was approximately Lambertian for phase
angles 𝑔 < 90◦. Therefore, we chose to approximate the residual multi-
facet scattering by a Lambertian surface with an effective Lambert
12
albedo that depends on the material’s single scattering albedo as well
as the roughness of the surface. Our goal then was to find an approxi-
mation for this effective Lambert albedo that satisfies physical intuition
and also agrees with measurements.

We define the residual as

𝑟𝑅 = 𝑟 Measured − 𝑟 Proposed, single (55)

We observed that the residual is well correlated with the diffusive
reflectance 𝑟 as defined in the previous section. Furthermore, we
0
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Fig. 13. Bidirectional reflectance measurements of quartz at 1100 nm (𝑟0 = 0.91) and 𝑖 = 30◦ at various RMS slope values 𝑀 , along with comparisons with our proposed roughness
correction and Hapke’s single-facet and modified roughness corrections.
observed that the residual is weakly correlated with the RMS slope 𝑀 .
Therefore, our proposed Lambertian multi-facet scattering approxima-
tion has the form

𝑟 Proposed, multi, Lambertian = 𝑐L𝑟0𝑀
cos 𝑖
π

(56)

where 𝑐L is a constant fitting parameter for the Lambertian multi-
facet scattering approximation. In this expression, the term cos 𝑖 ∕ π
represents the bidirectional reflectance of a perfectly white diffuse
surface, and the term 𝑐L𝑟0𝑀 represents the effective Lambert albedo
of this surface. Fig. 10 displays the residual as a function of 𝑤∗,
cos 𝑖, and 𝑀 separately for phase angles 𝑔 < 90◦. The solid black
line in the figure corresponds with our proposed Lambertian multi-
facet scattering approximation for the best fit value 𝑐L = 0.19. As
expected, the multi-facet scattering contribution is greater at higher
albedo and at higher roughness, which was anticipated in Buratti and
Veverka (1985), Shepard and Campbell (1998) and Hapke (2012b). In
these references, it was assumed that the primary effect of multi-facet
scattering is the filling in of shadowed regions, creating the appearance
of a smoother surface. However, our measurements suggest that multi-
facet scattering is most significant at nadir illumination, i.e. when there
are no shadows at all. The most likely explanation is that multi-facet
scattering increases the scattered radiance from all facets, whether they
are in shadow or not, due to scattering from adjacent facets within their
fields of view.
13
For phase angles greater than 90◦, the Lambertian multi-facet scat-
tering approximation becomes less accurate. In particular, our measure-
ments indicate that the multi-facet scattering becomes biased toward
the forward direction for phase angles greater than 90◦. To account for
this, we modify the Lambertian approximation with a Gaussian function
centered at 𝑔 = π with width π∕2 and a non-Lambertian fitting constant
𝑐NL:

𝑟 Proposed, multi, non−Lambertian = 𝑐L𝑟0𝑀
cos 𝑖
π

{

1 + 𝑐NL exp
[

−4
π
(π − 𝑔)2

]}

(57)

Fig. 11 shows the residual normalized by the Lambertian approxima-
tion, where the black line indicates the approximate non-Lambertian
correction term for the best fit value of 𝑐NL = 6.5.

While the multi-facet scattering contribution can be roughly ap-
proximated by the non-Lambertian model given in Eq. (57), there is
still significant variance in the data, especially with regard to the
roughness parameter 𝑀 . As shown in Fig. 12, the correlation between
the empirical multi-facet scattering model and the measured residual is
relatively low (𝑅2 = 0.38) when compared with the correlation between
the single-facet scattering model and the Monte Carlo simulation (𝑅2 =
0.9998). However, the overall magnitude of the multi-facet scattering
is much lower (<10% on average) than the single-facet scattering part,
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Fig. 14. Bidirectional reflectance measurements of olivine at 1100 nm (𝑟0 = 0.29) and 𝑖 = 30◦ at various RMS slope values 𝑀 , along with comparisons with our proposed roughness
correction and Hapke’s single-facet and modified roughness corrections.
even for the relatively high albedo minerals used in this study. At lower
albedos, the contribution from multi-facet scattering is expected to be
even lower.

6. Final results

Now that both the single-facet and multi-facet portions of our pro-
posed roughness correction model have been specified and validated,
the complete model may be written as

𝑟 Proposed(𝑖, 𝑒, 𝑔) = 𝑃 (¬𝑝 ∣ ¬𝑡)∫

+∞

−∞ ∫

+∞

−∞
𝑟(ι, ε, 𝑔) (1 − 𝑚𝑒 tan 𝑒)

×𝑃 (¬𝑡) 𝑓�⃗�(𝑚𝑥, 𝑚𝑦) 𝑑𝑚𝑥 𝑑𝑚𝑦

+𝑐L𝑅0𝑀
cos 𝑖
π

{

1 + 𝑐NL exp
[

−4
π
(π − 𝑔)2

]}

(58)

In this section, we compare the performance of our proposed roughness
correction against Hapke’s. We begin by examining high-resolution
reflectance measurements of the rough mineral surfaces at 1100 nm
while illuminated at 𝑖 = 30◦ as shown in Fig.’s 13 and 14. For purposes
of illustration, the wavelength of 1100 nm was chosen because it is the
wavelength at which the difference between the diffusive reflectance
of the two minerals is greatest: for quartz, 𝑟0 = 0.91 and for olivine,
𝑟 = 0.29.
14

0

We begin with the quartz (Fig. 13). It is seen that the increase in
macroscopic roughness causes a shift in the overall scattering behavior.
For the smooth sample, a prominent forward peak and SHOE are
both clearly visible (top row of Fig. 13). However, as the roughness
increases, the sample becomes progressively more backscattering. For
the roughest sample (bottom row of Fig. 13), the forward peak has
disappeared entirely. The disappearance of the forward peak can be
explained by the effect of shadowing: when viewing the sample in the
forward direction, a significant portion of the visible area is in shadow.
The broad backward peak is caused by two related phenomena. The
first effect may be called macroscopic shadow hiding. When viewing
the sample in the backward direction, a significant portion of the
shadowed facets are hidden from view. In the case that ψ = 0◦ and
𝑒 > 𝑖, no shadows will be visible to the detector at all. The second
effect is due to the preferential orientation of the visible facets toward
the detector at these angles. In the backward direction, the visible facets
are illuminated closer to their local nadir directions, causing them to
appear brighter than they would be if the surface were smooth.

We refer to the combined effect of both of these phenomena as the
macroscopic roughness backscattering bias (MRBB). In remote sensing
applications, the effect of the MRBB is that a macroscopically rough sur-
face appears to be more strongly backscattering than it would if it were
smooth. It should be noted that the photometric effect of the MRBB
is qualitatively different than that caused by the SHOE. The SHOE is
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Fig. 15. Bidirectional reflectance measurements of quartz at 𝑖 = 10◦, λ = 1100 nm, 𝑀 = 0.354, and comparisons with our proposed roughness correction, Hapke’s roughness
correction, and the single-facet scattering Monte Carlo simulation.
an opposition effect appearing only at small phase angles due to self-
shadowing of individual particles and/or clumps of particles (Hapke,
2012b). The MRBB is not an opposition effect, but rather an overall
bias toward backward scattering that affects the entire hemisphere. In
the case of a very rough surface, a wide backward lobe is observed that
is not localized to the opposition direction, as seen in the bottom row
of Fig. 13. The effect is particularly pronounced when ψ = 0 and 𝑒 > 𝑖,
since no macroscopic shadows are visible at these angles.

We see that our proposed model (second column) correctly predicts
the MRBB effect and the overall shape of the reflectance distribution
for each roughness level. We see that Hapke’s original single-facet
scattering model (third column) does correctly predict a shift toward
backward scattering, but it underpredicts the overall reflectance in
every direction. This is not surprising, since his original model does
not include multi-facet scattering. We also see that the forward lobe
is incorrectly preserved, even for the roughest sample. Finally, we
15
see that Hapke’s modified roughness model (fourth column) predicts
that the reflectance will remain nearly unchanged by the roughness.
This is because the diffusive reflectance is high (𝑟0 = 0.91) at this
wavelength, and his modification reduces the roughness parameter ϑ

by multiplying it by 1 − 𝑟0, as described by Eq. (12). The net result is
that the photometric effect of the roughness has been almost completely
neglected by the model.

Next, we examine the olivine in Fig. 14. We again see the MRBB
effect, and this time it is even more dramatic. As seen in the first
column, the reflectance distribution goes from heavily forward scat-
tering to heavily backward scattering as a result of the roughness.
Our proposed model (second column) correctly predicts this behavior.
Hapke’s single-facet model (third column) also correctly predicts a
shift toward backward scattering, but the reflectance is once again
underpredicted in every direction. Hapke’s modified model (fourth
column) does improve this underprediction somewhat. The diffusive
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Fig. 16. Bidirectional reflectance measurements of olivine at 𝑖 = 10◦, λ = 1100 nm, 𝑀 = 0.354, and comparisons with our proposed roughness correction, Hapke’s roughness
correction, and the single-facet scattering Monte Carlo simulation.
reflectance of olivine at 1100 nm is 𝑟0 = 0.29, and so the effect of
the modification in Eq. (12) is to multiply ϑ by 0.71, which in turn
increases the reflectance across the hemisphere. However, the MRBB
effect predicted in Hapke’s modified model is not as pronounced as the
measurements indicate it should be.

To more closely examine the performance of our proposed model
at a variety of incidence angles and view geometries, we plotted the
bidirectional reflectance along transects of the hemisphere, i.e. for fixed
ψ, for the two minerals at λ = 1100 nm and using the roughest mold
(𝑀 = 0.354).

For the scans at 𝑖 = 10◦ (Fig’s. 15 and 16), our proposed correction
and Hapke’s correction correctly predict the overall distribution of
reflectance. However, we see that Hapke’s single-facet roughness cor-
rection underestimates the reflectance in every direction. Once again,
this is not surprising, since his model does not include multi-facet
scattering. As expected, the absolute error is greater for the quartz
16
than for the olivine, since quartz has a higher albedo at this wave-
length. Hapke’s modified model accounts for this underestimation to
some degree. However, it appears to overestimate for the quartz and
underestimate for the olivine. Our proposed model correctly accounts
for the multi-facet scattering contribution at both albedos. It should
also be noted that the difference between the Lambertian and non-
Lambertian multi-facet scattering approximations is minimal in these
geometries because the measured phase angle does not exceed 80◦.

For the scans at 𝑖 = 30◦ (Fig’s. 17 and 18), we begin to see
qualitative differences in the predicted scattering behavior between the
three models. For instance, for the quartz, Hapke’s single-facet model
predicts a dip in reflectance in the backward direction for 𝑒 > 𝑖,
whereas the measurements and our proposed model do not. While his
model underpredicts the reflectance over much of the hemisphere, this
underprediction is less pronounced in the forward direction at high
phase angles. Hapke’s modified model does increase the reflectance
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Fig. 17. Bidirectional reflectance measurements of quartz at 𝑖 = 30◦, λ = 1100 nm, 𝑀 = 0.354, and comparisons with our proposed roughness correction, Hapke’s roughness
correction, and the single-facet scattering Monte Carlo simulation.
with respect to his single-facet model, as expected. However, the shape
of the distribution is not correct. It still underestimates the reflectance
over much of the hemisphere, but overpredicts the reflectance in the
forward direction for 𝑒 > 40◦. This may be due to the fact that his
modification reduces the effective ϑ value, and so the MRBB effect
is not properly modeled. For these geometries, we also begin to see
the difference between the Lambertian and non-Lambertian multi-facet
scattering approximations at higher phase angles.

Finally, for the scans at 𝑖 = 60◦ (Fig’s. 19 and 20), we see that while
Hapke’s single-facet model performs the worst of the three models over
much of the hemisphere, it performs surprisingly well in the forward
direction. In fact, in the forward direction it out-performs the Monte
Carlo single-facet scattering simulation, which is unexpected. For a
sufficiently large number of simulations, the Monte Carlo simulation
approaches the exact solution for single-facet scattering. Considering
the fact that Hapke’s single-facet roughness correction is an attempt
17
to approximate the single-facet scattering solution, one would expect
that the performance would be worse than that of the Monte Carlo
simulation. It appears that Hapke’s correction overestimates the single-
facet scattering reflectance in the forward direction for these angles,
but that this overestimation corresponds approximately with the effect
of multi-facet scattering. Therefore, his modified model greatly over-
estimates the reflectance in the forward direction, especially for the
quartz. Meanwhile, we see that at these higher phase angles, our non-
Lambertian multi-facet scattering approximation performs better than
the Lambertian one (𝑐NL = 0), such that our proposed model agrees
with our measurements across the hemisphere.

To further quantify the performance of the three roughness correc-
tions, we computed the percent error in the reflectance predicted by
each model at incidence zenith angles ranging from 𝑖 = 10◦ to 𝑖 = 60◦,
emergence zenith angles ranging from 𝑒 = 0◦ to 𝑒 = 70◦, and azimuth
angles ψ = 0◦, 60◦, 120◦, and 180◦ at 1751 wavelength bands ranging
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Fig. 18. Bidirectional reflectance measurements of olivine at 𝑖 = 30◦, λ = 1100 nm, 𝑀 = 0.354, and comparisons with our proposed roughness correction, Hapke’s roughness
correction, and the single-facet scattering Monte Carlo simulation.
from 500 nm to 2250 nm, for both the olivine and quartz, and for each
of the three roughness molds. To see how the model performs across the
spectral range of our instrument, we plotted the percent error as a func-
tion of wavelength, averaged over all illumination and view geometries,
for each mineral as shown in Fig. 21. We see that our proposed model
has the lowest reflectance error across this spectral range. The standard
deviation of the reflectance error across the different view geometries
and roughness levels (indicated by the error bars) is also lower for our
proposed model. Since Hapke’s single-facet scattering model does not
include multi-facet scattering, the reflectance is underestimated across
the entire spectrum. It appears that his modified model does correct for
this underestimation to an extent, however the variance is greater than
that of our proposed model.

We then plotted the root-mean-square error (RMSE) as a function
of phase angle 𝑔, as shown in Fig. 22. As seen in the figure, the
RMSE of our proposed roughness correction is an improvement over
18
Hapke’s original single-facet scattering model for phase angles less than
90◦, and the performance of the two models is comparable above this
threshold. Due to the constraints of our laboratory setup, the models
could not be evaluated at phase angles greater than 130◦, and so the
performance of the two models in this regime is uncertain. We also
see that the performance of Hapke’s modified model is superior to
the single-facet model for smaller phase angles, but the error becomes
much larger at higher phase angles. This can be explained by the fact
that the model incorrectly neglects the effects of roughness at high
𝑟0 (as was seen in Fig. 13), and this effect is most pronounced at
high phase angles. One could theoretically choose to utilize a hybrid
model: i.e. use Hapke’s modified model for 𝑔 ≤ 80◦ and use the single-
facet model for 𝑔 > 80◦. However, if one chooses this strategy, one
should ensure that the parameter ϑ is interpreted correctly. As discussed
previously, ϑ as defined in Hapke’s model is not equal to the mean
value of ϑ. Rather, ‘‘ϑ’’ as used in Hapke’s model should be interpreted
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Fig. 19. Bidirectional reflectance measurements of quartz at 𝑖 = 60◦, λ = 1100 nm, 𝑀 = 0.354, and comparisons with our proposed roughness correction, Hapke’s roughness
correction, and the single-facet scattering Monte Carlo simulation.
in terms of the RMS slope as described by Eq. (29). We note that our
proposed model has lower RMSE across the entire range of measured
phase angles and also correctly predicts the MRBB effect shown in
Fig’s. 13 and 14. Based on our measurements, it is expected that our
proposed model will perform as well or better than either of Hapke’s
models in virtually every situation.

7. Conclusion

In this paper, we derived an alternative to Hapke’s macroscopic
roughness correction and evaluated the models using rough mineral
samples prepared in the laboratory. Our model subdivides rough sur-
face scattering into single-facet scattering and multi-facet scattering.
Our single-facet scattering model was derived directly from the defi-
nition of bidirectional reflectance of a rough surface. We incorporated
19
a result published by Heitz et al. (2013) to approximate the effect of
projected shadowing. Through a Monte Carlo simulation for single-facet
scattering, we evaluated our proposed single-facet scattering model,
finding good agreement. The simulations demonstrated that the single-
facet scattering component of our proposed model is nearly an exact
solution for single-facet scattering. By fitting the residual between the
bidirectional reflectance measured in the laboratory and the prediction
of the single-facet scattering model, we developed an empirical approx-
imation for multi-facet scattering. We found that the contribution of
multi-facet scattering is approximately Lambertian for phase angles less
than 90◦, but that for larger phase angles, a non-Lambertian, forward
scattering model is more appropriate. We evaluated our proposed
model using rough mineral surfaces for phase angles up to 130◦, surface
RMS slopes up to 0.354, and single scattering albedos between 0.86
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Fig. 20. Bidirectional reflectance measurements of olivine at 𝑖 = 60◦, λ = 1100 nm, 𝑀 = 0.354, and comparisons with our proposed roughness correction, Hapke’s roughness
correction, and the single-facet scattering Monte Carlo simulation.
and 0.99. Under these conditions, our proposed model demonstrated
improved accuracy over Hapke’s single-facet roughness correction, as
well as his modified roughness correction.

In the course of developing and evaluating our proposed roughness
correction model, we identified several important features of rough
surface scattering. It has previously been suggested in the literature that
the primary effect of multi-facet scattering is the filling in of shadowed
regions of the surface, creating the appearance of a smoother surface.
However, we demonstrated that, in fact, multi-facet scattering increases
the scattered radiance in all directions, even when no shadows are
visible from a given view direction. Indeed, the contribution from
multi-facet scattering is greatest at nadir illumination, when there are
no shadows at all. We also observed that increasing the roughness of
20
a surface produces a more strongly backscattering reflectance distribu-
tion due to macroscopic shadow hiding and the preferential orientation
of the visible facets when viewed from the backward direction. We refer
to this effect as the macroscopic roughness backscattering bias (MRBB)
which we showed is distinct from the shadow hiding opposition effect
(SHOE).

Although our proposed roughness correction offers an improvement
over Hapke’s correction over the conditions we studied, there are
several areas that warrant future research. As discussed previously,
the single-facet scattering component of our proposed model is nearly
an exact solution for single-facet scattering. Therefore, the error in
the model is due almost entirely to multi-facet scattering, which is
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Fig. 21. Percent error of our proposed roughness correction, Hapke’s original and modified roughness corrections. In this figure, the percent error in reflectance 𝑟 has been
averaged over all illumination and view geometries for each wavelength band. The error bar indicates the standard deviation of the error computed for that band. Only a subset
of staggered bands is displayed for easier visualization.
Fig. 22. Root-mean-square error of our proposed roughness correction and Hapke’s original and modified roughness corrections. Error bars indicate the standard deviation of
RMSE within each 10◦ bin in phase angle 𝑔.
more difficult to model. In this paper, we presented a relatively sim-
ple empirical approximation for multi-facet scattering. However, the
underlying physical mechanisms behind multi-facet scattering are still
not well understood. In particular, the forward scattering behavior that
21
is seen at higher phase angles warrants further investigation. Another
possible avenue for future research is to evaluate our proposed model
on surfaces with anisotropic roughness statistics, or with statistics that
are otherwise not well modeled by the form of 𝑓 (𝑚 , 𝑚 ) given by
�⃗� 𝑥 𝑦
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Eq. (21). Our proposed model may be easily adapted to such surfaces
by replacing 𝑓�⃗�(𝑚𝑥, 𝑚𝑦) in Eq. (58) with any desired distribution, rather
than the isotropic one given by Eq. (21).
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Appendix. Hapke’s macroscopic roughness correction

𝑟 Hapke, single(𝑖, 𝑒, 𝑔, ϑ) = 𝑟(𝑖𝑒, 𝑒𝑒, 𝑔)𝑆(𝑖, 𝑒, 𝑔, ϑ) (A.1a)

𝑟 Hapke, modif ied(𝑖, 𝑒, 𝑔, ϑ) = 𝑟 Hapke, single(𝑖, 𝑒, 𝑔, (1 − 𝑟0)ϑ) (A.1b)

𝑖𝑒 = cos−1 µ0𝑒 (A.1c)

𝑒𝑒 = cos−1 µ𝑒 (A.1d)
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