
Parameter-Efficient Masking Networks

Yue Bai1,∗ Huan Wang1,4 Xu Ma1 Yitian Zhang1 Zhiqiang Tao3 Yun Fu1,2,4

1Department of Electrical and Computer Engineering, Northeastern University
2Khoury College of Computer Science, Northeastern University

3School of Information, Rochester Institute of Technology
4AInnovation Labs, Inc.

Project Homepage: https://yueb17.github.io/PEMN

Abstract

A deeper network structure generally handles more complicated non-linearity and
performs more competitively. Nowadays, advanced network designs often contain
a large number of repetitive structures (e.g., Transformer). They empower the
network capacity to a new level but also increase the model size inevitably, which is
unfriendly to either model restoring or transferring. In this study, we are the first to
investigate the representative potential of fixed random weights with limited unique
values by learning diverse masks and introduce the Parameter-Efficient Masking
Networks (PEMN). It also naturally leads to a new paradigm for model compres-
sion to diminish the model size. Concretely, motivated by the repetitive structures
in modern neural networks, we utilize one random initialized layer, accompanied
with different masks, to convey different feature mappings and represent repetitive
network modules. Therefore, the model can be expressed as one-layer with a
bunch of masks, which significantly reduce the model storage cost. Furthermore,
we enhance our strategy by learning masks for a model filled by padding a given
random weights vector. In this way, our method can further lower the space com-
plexity, especially for models without many repetitive architectures. We validate
the potential of PEMN learning masks on random weights with limited unique
values and test its effectiveness for a new compression paradigm based on different
network architectures. Code is available at https://github.com/yueb17/PEMN.

1 Introduction

Deep neural networks have emerged in several application fields and achieved state-of-the-art perfor-
mances [9, 18, 34]. Along with the data explosion in this era, huge amount of data gathered to build
network models with higher capacity [4, 8, 30]. In addition, researchers also pursue a unified network
framework to deal with multi-modal and multi-task problems as a powerful intelligent model [30, 42].
All these trending topics inevitably require even larger and deeper network models to tackle diverse
data flows, arising new challenges to compress and transmit models, especially for mobile systems.

Despite the success of recent years with promising task performances, advanced neural networks
suffer from their growing size, which causes inconvenience for both model storage and transferring.
To reduce the model size of a given network architecture, neural network pruning is a typical
technique [26, 24, 13]. Pruning approaches remove redundant weights using designed criteria and
the pruning operation can be conducted for both pretrained model (conventional pruning: [14, 13])
and randomly initialized model (pruning at initialization: [25, 37]). Another promising direction
is to obtain sparse network by dynamic sparse training [10, 29]. They jointly optimize network
architectures and weights to find good sparse networks. Basically, these methods commonly demand
regular training, and the final weights are updated by optimization algorithms like SGD automatically.

*Corresponding author: bai.yue@northeastern.edu

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://yueb17.github.io/PEMN
https://github.com/yueb17/PEMN


Now that the trained weights have such a great representative capacity, one may wonder what is
the potential of random and fixed weights or is it possible to achieve the same performance on
random weights? If we consider a whole network, the answer is obviously negative as a random
network cannot provide informative and distinguishable outputs. However, picking a subnetwork
from a random dense network make it possible as feature mapping varies with changes of subnetwork
structures. Then, the question has been updated as what is the representative potential of random
and fixed weights with selecting subnetwork structures? Pioneer work LTH [11] shows the winning
ticket exists in random network with good trainability but cannot be used directly without further
training. Supermasks [44] enhances the winning ticket and enable it being usable directly. Recent
work Popup [31] significantly improves subnetwork capacity from its dense counterpart by learning
the masks using backpropagation. Following this insightful perspective, we further ask a question
– what is the maximum representative potential of a set of random weights? In our work, we
first make a thorough exploration of this scientific question to propose our Parameter-Efficient
Masking Networks (PEMN). Then, leveraging on the PEMN, we naturally introduce a new network
compression paradigm by combining a set of fixed random weights with a corresponding learned
mask to represent the whole network.

We start with network architectures which recent popular design style, i.e., building a small-scale
encoding module and stacking it to obtain a deep neural network [9, 33, 32]. Based on this point, we
naturally propose the One-layer strategy by using one module as a prototype and copy its parameter
into other repetitive structures. More generally, we further provide two versions: max-layer padding
(MP) and random weight padding (RP) to handle diverse network structures. Specifically, MP chooses
the layer with the most number of parameters as the prototype and uses first certain parameters of
prototype to fill in other layers. RP even breaks the constraint of network architecture. It samples a
random vector with certain length as the prototype which is copied several times to fill in all layers
based on their different lengths. RP is architecture-agnostic and can be seen as a most general strategy
in our work. Three strategies are from specific to general manner and reduce the number of unique
parameters gradually. We first employ these strategies to randomly initialize network. Then, we learn
different masks to explore the random weights potential and positively answer the scientific question
above. Leveraging on it, we propose a new network compression paradigm by using a set of random
weights with a bunch of masks to represent a network model instead of restoring sparse weights
for all layers (see Fig. 1). We conduct comprehensive experiments to explore the random weights
representative potential and test the model compression performance to validate our paradigm. We
summarize our contributions as below:

• We scientifically explore the representative potential of fixed random weights with lim-
ited unique values and introduce our Parameter-Efficient Masking Networks (PEMN). It
leverages on learning different masks to represent different feature mappings.

• A novel network compression paradigm is naturally proposed by fully utilizing the repre-
sentative capacity of random weights. We represent and restore a network based on a given
random vector with a bunch of masks instead of retaining all the sparse weights.

• Extensive experimental results explore the random weights potential by using our PEMN
and test the compression performance of our new paradigm. We expect our work can inspire
more interesting explorations in this direction.

2 Related Works

2.1 Sparse Network Training

Our work is related to sparse network training. Conventional pruning techniques finetune the pruned
network from pretrained models [13, 14] with various pruning criteria for different applications [26,
15, 16, 38, 36, 40, 41]. Instead of pruning a pretrained model, pruning at initialization [37] approaches
attempt to find winning ticket from the random weight. Gradient information is considered to build
pruning criteria in [25, 35]. Different from pruning methods above, sparse network training also
can be conducted in a dynamic fashion. To name a few, Rigging the Lottery [10] edits the network
connections and jointly updates the learnable weights. Dynamic Sparse Reparameterization [29]
modifies the parameter budget among the whole network dynamically. Sparse Networks from
Scratch [7] proposes a momentum based approach to adaptively grow weights and empirically

2



Several sparse 
weight matrix

… …

Parameter-Efficient Masking NetworksConventional Sparse Network Random fixed weightsOptimized weights

Pruning using criteria Selecting using masks

…

Feature mappings Feature mappings

One-layer with
several masks

…

Figure 1: Comparison of different ways to represent a neural network. Different features mappings
are shown as blue rectangles. Squares with different color patches inside serve as parameters of
different layers. Left is the conventional fashion where weights are optimized and sparse structures
are decided by certain criteria. Right is our PEMN to represent a network where the prototype weights
are fixed and repetitively used to fill in the whole network and different masks are learned to deliver
different feature mappings. Following this line, we explore the representative potential of random
weights and propose a novel paradigm to achieve model compression by combining a set of random
weights and a bunch of masks.

verifies its effectiveness. Most of the sparse network training achieve the network sparsity by keeping
necessary weights and removing others, which reduces the cost of model storage and transferring. In
our work, we propose a novel model compression paradigm by leveraging the representative potential
of random weights accompanied with subnetwork selection.

2.2 Random Network Selection

Our work inherits the research line of exploring the representative capacity of random network. The
potential of randomly initialized network is pioneeringly explored by the Lottery Ticket Hypoth-
esis [11], and further investigated by [28, 2, 39]. It articulates that there exists a winning ticket
subnetwork in a random dense network. This subnetwork can be trained in isolation and achieves
comparable results with its dense counterpart. Moreover, the potential of the winning ticket is further
explored in Supermasks [44]. It surprisingly discovers the subnetwork can be identified from dense
network to obtain reasonable performance without training. It extends and proves the potential of
subnetwork from good trainability to being used directly. More recently, the representative capacity
of subnetworks is enhanced by Popup algorithm proposed by [31]. Based on random dense initial-
ization, the learnable mask is optimized to obtain subnetwork with promising results. Instead of
considering network with random weights, the network with the same shared parameters can also
delivery representative capacity to some extent, which is investigated by Weight Agnostic Neural
Network [12] and also inspires this research direction. We are highly motivated by these researches to
validate how is the representative potential of random weights with limited unique values by learning
various masks.

2.3 Weight Sharing

Our study is also related to several recent works about weight sharing. This strategy has been explored
and analyzed in convolutional neural networks for their efficiency [19, 43]. In addition, several works
are also proposed for efficient transformer architecture using weight sharing strategy [22, 5, 1]. There
are two main differences between these works and our study: 1) They follow the regular optimization
strategy to learn the weight in a recurrent fashion, which is closer to the recurrent neural network.
Our work follows a different setting. We use fixed repetitive random weights to fill in the whole
network and employs different masks to represent different feature mappings; 2) They mainly conduct
cross-layer weight sharing for repetitive transformer structure. In our work, we explore the potential
of random weight vector with limited length as much smaller repetitive granularity to fill in the whole
network, which is more challenging than cross-layer sharing strategy.

3



…

… …

Regular One-Layer

Max-Layer Padding

…

Random Vector Padding

Randomly initialized Prototype

Prototype
… …

Prototype
… …

Figure 2: Illustrations of different strategies in PEMN to represent network structures. Compared with
regular fashion where all parameters are randomly initialized, we provide three parameter-efficient
strategies, One-layer, Max-layer padding (MP), and Random vector padding (RP), to fully explore
the representative capacity of random weights.

3 Parameter-Efficient Masking Networks

3.1 Instinctive Motivation

Overparameterized randomly initialized neural network benefits network optimization to get higher
performance. Inevitably, the trained network contains redundant parameters but can be further
compressed, which defines the conventional neural network pruning. On the other side, the network
redundancy also ensures a large random network contains a huge number of possible subnetworks,
thus, carefully selecting a specific subnetwork should obtain promising performances. This point of
view has been proved by [31, 44]. These works demonstrate the representative potential of certain
subset combinations of a given random weights. Following this lane, we naturally ask a question:
what is the maximum representative potential of a set of random weights? or in another word: can
we use random weights with limited unique values to represent a usable network? We answer this
question as positive and introduce our Parameter-Efficient Masking Networks (PEMN). Moreover,
leveraging on 1) compared with trained network where the weight values cannot be predicted, we
can pre-access the random weights before we select the subnetwork; 2) selected subnetwork can be
efficiently represented by a bunch of masks, we can extremely reduce the network storage size and
establish a new paradigm for network compression.

3.2 Sparse Selection

We follow [31] to conduct the sparse network selection. We start from a randomly initialized neural
network consisting of L layers. For each l ∈ {1, 2, ..., L}, it has

Il+1 = σ(F [Il;wl]), (1)

where Il and Il+1 are the input and output of layer l. σ is the activation. F represents the encoding
layer such as convolutional or linear layer with parameter wl = {w1

l , w
2
l , ..., w

dl

l }, where dl is the
parameter dimension of layer l. To perform the sparse selection, all the weights w = {w1, w2, ..., wL}
are fixed and denoted as w̃. To pick the fixed weights for subnetwork, each weight wj

l is assigned a
learnable element-wise score sjl to indicate its importance in the network. The Eq. 1 is rewrited as

Il+1 = σ(F [Il;wl ⊙ h(sl)]), (2)

where sl = {s1l , s2l , ..., s
dl

l } is the score vector and h(·) is the indicator function to create the mask. It
outputs 1 when the value of sjl belongs to the top K% highest scores and outputs 0 for others, where
K is predefined sparse selection ratio. Through optimizing s with fixed w, a subset of original dense

4



weights is finally selected. Since h(·) is a non-derivable function, the gradient of each sjl cannot
be obtained directly. The straight-through gradient estimator [3] is applied to treat h(·) as identity
function during gradient backwards pass. Formally, the gradient of s is approximately computed as

g̃(sjl ) =
∂L

∂Ĩl+1

∂Ĩl+1

∂sjl
≈ ∂L

∂Il+1

∂Il+1

∂sjl
, (3)

where Ĩl+1 = σ(F [Il;wl ⊙ sl]), which is applied estimation. g̃(sjl ) is approximately estimated
gradient of weight score sjl . In this way, the dense network is randomly initialized but fixed, but one
of its subnetwork can be selected using Backpropagation. In our work, we name this optimization
process as sparse selection.

3.3 Parameter-Efficient Strategy

Following the logic of parameter-efficient exploration from specific to general scenario, PEMN
utilizes three strategies to construct the whole network based on given random weights: 1) One-layer
(Sec. 3.3.1), 2) Max-layer padding (MP) (Sec. 3.4), and 3) Random vector padding (RP) (Sec. 3.4),
which are detailedly introduced below.

3.3.1 One-Layer

Algorithm 1 One-Layer

1: Input: A random network with L-layer:
w = {w1, w2, ..., wL}

2: Output: A L-layer network filled by P
prototype layers with parameters: w∗ =
{wpro1 , wpro2 , ..., wproP }

3: Randomly initialize layers from 1 to L
4: Record parameter space dimensions:
{R1,R2, ...,RL}

5: Initialize a prototype layers list: Listpro =
[]

6: for l in 1, 2, ..., L do
7: if ∀Rprop ∈ Listpro ̸= Rl then
8: Append wl into Listpro
9: else

10: Find wprop , where Rprop = Rl

11: Replace wl with wprop

12: end if
13: end for
14: Return updated w as w∗

Sparse selection initializes a dense network as a
pool to pick certain weights. It provides a novel di-
rection to find admirable subnetwork without pre-
training and pruning. However, with increasing of
network scales, the cost of restoring and transfer-
ing a neural network grows rapidly. Noticed that
more popular network structures follow a similar
design style: proposing a well-designed model-
ing block and stacking it several times to boost
network capacity, we are inspired to explore the
feasibility of finding subnetworks by iteratively
selecting different masks in a series of repetitive
modules. Formally, a L-layer randomly initial-
ized network NL can be represented as a series of
parameters:

NL : w = [w1, w2, ..., wL];wl ∈ Rl, (4)

where l ∈ {1, 2, ..., L} and wl is used for various
layers. Rl denotes different parameter spaces (e.g.,
RI×O

l for linear, RN×H×W
l for CNN layer, where

I/O are input/output dimensions and N /H/W are
CNN kernel dimensions). From shallow to deep
layer, we first sample the prototype layers for the whole network with unique parameter spaces,
represented as wpro = [wpro1 , wpro2 , ..., wproP ]. For each wprop , we use its parameters to replace
its target layers wtarp which share the same parameter space:

wtarpt
← wprop ;Rtarpt

= Rprop , t ∈ {1, 2, ..., T p}, (5)

where T p is the number of target layers of prototype p. The whole network filled by several layers
with unique weight size and Eq. 4 can be rewrited as

NL : w∗ = [

T 1+T 2+...+TP︷ ︸︸ ︷
wpro1 , ..., wpro2 , ..., wprop , ..., wproP ];

∑
T p = L. (6)

We take a simple 5-layer MLP to clarify this operation: its dimensions are [512, 100, 100, 100, 10]
with 4 weight matrices w1 ∈ R512×100, w2 ∈ R100×100, w3 ∈ R100×100, and w4 ∈ R100×10. In this
case, w1, w2 and w4 are three prototype layers. w2 has two target layers w3 and itself. w1/w4 only
has itself as target layer. The general algorithm is summarized in Alg. 1.

5



In this way, any repetitive modules in a given network structure can be represented by one bunch of
random weights. Using the sparse selection strategy, we iteratively pick subnetworks in the same set
of random weights to obtain diverse feature mappings. Therefore, the cost to represent the network
significantly reduces, especially for deep network with many repetitive blocks. In other words, one
random layer with different masks can represent the majority of a complete network structure, which
is named as one-layer.

3.4 Random Weights Padding

One-layer strategy efficiently handles networks with many repetitive modules. The majority of the
whole network can be compressed into one random layer with a set of masks. However, in real-world
applications, various network architectures may not follow a tidy pattern resulting in different shapes
for different layers. Hence, the one-layer is not flexible enough to efficiently represent such networks.
To handle it, we naturally propose a enhanced strategy, Random Weights Padding. It consists of two
versions, Max-layer padding and Random vector padding. We first formally rewrite Eq. 4 as

NL : w = [w1, w2, ..., wL];wl ∈ Rdl , l ∈ {1, 2, ..., L}, (7)
where wl is flatten into a vector with dimension dl (e.g., dl = I × O for linear layer and dl =
N ×H ×W for CNN layer).

Max-Layer Padding (MP). It chooses the layer wm as the prototype where dm =
max([d1, d2, ..., dL]) is the highest dimension. All other layers in NL have fewer parameters than
wm. We keep the prototype as it is and simply pick the first dl parameters from wm to replace the
parameters in wl, which is described by

wl ← wm[: dl]; l ∈ {1, 2, ..., L}. (8)

Random Vector Padding (RP). Instead of picking a complete layer as prototype, RP further reduces
the granularity of random prototype from a layer to a random weights vector with a relatively short
length. We let vpro ∈ Rdv as the random weights vector with length dv. For each layer l, we repeat
vpro several times to reach the length of wl. It can be formally described as

wl ← [

dl︷ ︸︸ ︷
vpro, ...]; l ∈ {1, 2, ..., L}. (9)

After the padding operation, weights in Eq. 7 are reshaped back into the format of Eq. 4 to perform
as a network. These two padding strategies are summarized in Alg. 2 and Alg. 3.

In the series of one-layer, MP, and RP, based on sparse selection, we explore using fewer unique
weights to represent the whole network. Leveraging on the property of the fixed weight values, the
cost of delegating a network keeps decreasing by using a random vector with a bunch of masks. By
this mean, we fully explore the representative capacity of random weights with limited unique values.
Furthermore, a novel model compression paradigm can be correspondingly established by restoring a
set of random weights with different masks. Our three strategies compared to regular network setting
are shown in Fig. 2.

Algorithm 2 Max-Layer Padding

1: Input: A L-layer random network with
parameters: w = {w1, w2, ..., wL}

2: Output: A L-layer network with MP: w∗ =
{wm[: d1], wm[: d2], ..., wm[: dL]}

3: Randomly initialize layers from 1 to L
4: Find the layer wm with the maximum weight

dimension dm among all layers wl, l =
{1, 2, ..., L}

5: for l in 1, 2, ..., L do
6: Replace wl with the first dl values in wm

given by wm[: dl]
7: end for
8: Return updated w as w∗

Algorithm 3 Random Vector Padding

1: Input: A L-layer random network with
parameters: w = {w1, w2, ..., wL}

2: Output: A L-layer network with RP: w∗ =

{[
d1︷ ︸︸ ︷

vpro, ...], [

d2︷ ︸︸ ︷
vpro, ...], ..., [

dL︷ ︸︸ ︷
vpro, ...]}

3: Randomly initialize layers from 1 to L
4: Randomly initialize a weights vector vpro ∈

Rdv with dv dimension
5: for l in 1, 2, ..., L do
6: Repeat vpro until reaching the length dl
7: Replace wl with the repeated vector vpro
8: end for
9: Return updated w as w∗

6



 Mask One-layer MP RP_1e-1 RP_1e-2 RP_1e-3 RP_1e-4 RP_1e-5 
79

81

83

85

87

89

91

93

95

Ac
c 

(%
)

Dense_256
Dense_512
Mask_256
Mask_512
One-layer_256
One-layer_512
MP-RP_256
MP-RP_512

(a) 6-block ConvMixer with 256/512 dimensions.

 Mask One-layer MP RP_1e-1 RP_1e-2 RP_1e-3 RP_1e-4 RP_1e-5 
82

84

86

88

90

92

94

96

Ac
c 

(%
)

Dense_256
Dense_512
Mask_256
Mask_512
One-layer_256
One-layer_512
MP-RP_256
MP-RP_512

(b) 8-block ConvMixer with 256/512 dimensions.

 Mask One-layer MP RP_1e-1 RP_1e-2 RP_1e-3 RP_1e-4 RP_1e-5 
64

68

72

76

80

Ac
c 

(%
)

Dense_256
Dense_512
Mask_256
Mask_512
One-layer_256
One-layer_512
MP-RP_256
MP-RP_512

(c) 6-block ViT with 256/512 dimensions.

 Mask One-layer MP RP_1e-1 RP_1e-2 RP_1e-3 RP_1e-4 RP_1e-5 
71

73

75

77

79

81

83

85

Ac
c 

(%
)

Dense_256
Dense_512
Mask_256
Mask_512
One-layer_256
One-layer_512
MP-RP_256
MP-RP_512

(d) 8-block ViT with 256/512 dimensions.

Figure 3: Performances of ConvMixer and ViT backbones on CIFAR10 dataset with different model
hyperparameters. Y-axis represent the test accuracy and X-axis denotes different network parameter
settings. Dense means the model is trained in regular fashion. Mask is the sparse selection strategy.
One-layer, MP, and RP are our strategies. The decimal after RP means the number of unique
parameters compared with MP. From Mask to RP 1e-5, the unique values of network decrease.
Different experimental settings illustrate the representative potential of random weights.

4 Experiments

Our experiments conduct empirically validations on two aspects of our interests. Firstly, we validate
how large is the representative potential of random weights with limited unique values to test the
effectiveness of our proposed Parameter-Efficient Masking Networks (PEMN). Secondly, leveraging
on the pre-accessibility of random weights and lightweight storage cost of binary mask, it is promising
to establish a new model compression paradigm.

4.1 Preparation

We comprehensively use several classic or recently popular backbones for image classification task
to conduct general validations. Backbones include ResNet32, ResNet56 [18], ConvMixer [33], and
ViT [9]. We use CIFAR10 and CIFAR100 datasets [21] for our experiments.

4.2 Representative Random Weights in PEMN

We first explore the representative potential of random weights in PEMN based on our proposed
strategies, One-Layer, Max-Layer Padding (MP), and Random Vector Padding (RP). We use a CNN
based architecture Convmixer [33] and a MLP based model ViT [9] to conduct our experiments on
CIFAR10 dataset [21].

In Fig. 3, we show 8 pairs of experiments based on 2 backbones (ConvMixer, ViT) using 2 depth
numbers (6, 8) and 2 hidden dimensions (256, 512). Each pair includes a dense network performance
and a series of results obtained by sparse selection with different random weighting strategies.
Specifically, Mask learns the mask on the randomly initialized network. One-layer, MP, and RP
represent our proposed strategies. To simplify the comparison, we use a rate number after RP to
show how many unique parameters used in RP compared with MP. From the left Mask to right

7



89 90 91 92 93 94 95 96 97
Size Compression Ratio (%)

77

79

81

83

85

87

89

91

93

Ac
c 

(%
)

Dense_32
Random_32
Minimum_32
Ours_32
Dense_56
Random_56
Minimum_56
Ours_56

(a) ResNet32/ResNet56 on CIFAR10 dataset.

89 90 91 92 93 94 95 96 97
Size Compression Ratio (%)

35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69

Ac
c 

(%
)

Dense_32
Random_32
Minimum_32
Ours_32
Dense_56
Random_56
Minimum_56
Ours_56

(b) Resnet32/ResNet56 on CIFAR100 dataset.

Figure 4: Compression performance validation on CIFAR10/CIFAR100 datasets on
ResNet32/ResNet56 backbones. Y-axis denotes the test accuracy. X-axis means the network size
compression ratio. Different colors represent different network architectures. The straight lines on the
top are performance of dense model with regular training. Lines with different symbol shapes denote
different settings. For ResNet, our three points are based on MP, RP 1e-1, and RP 1e-2, respectively.
This pair of figures show that our proposed paradigm achieves admirable compression performance
compared with baselines. In very high compression ratios, we can still maintain the test accuracy.

RP 1e-5, the number of unique parameters gradually decreases. Different settings show the similar
patterns concluded as: 1) Compared with regular trained dense model, sparse selection approach
generally obtains promising results, even if with a performance drop caused by the constraint of
fixing all the parameters; 2) From left to right on X-axis, the performance gradually drops. This
is caused by the decreasing number of unique values in network, which makes network has less
representative capacity; 3) However, performance drop arises when the number of unique parameters
is extremely low (e.g., RP 1e-4, RP 1e-5). The results remain stable for the most of random weights
strategies; 4) Larger depth and hidden dimension boost the model capacity for different configurations.
The performance drop of random weights strategies from their dense counterpart is also decreased.
In addition, ViT shows some unstable fluctuation when fewer unique parameter, compared with
ConvMixer with relatively stable patterns. This may caused by the difficulty of training MLP based
network itself and will not affect our main conclusions.

The performance stability shown above illustrates the network representative capacity can be realized
not only by overparameterizing the model, but also carefully picking different combinations of random
parameters with limited unique values. In this way, the effectiveness of our PEMN is validated and we
can represent a network using a random parameters prototype with different learned masks, instead
of typically restoring all the different parameters. This property inspires us to introduce a new model
compression paradigm proposed in following section.

4.3 A New Model Compression Paradigm

Practically, our work proposes a new network compression paradigm based on a group of random
weights with different masks. We first elaborate the network compression and storage processes to
clarify our advantages then report the empirical results.

4.3.1 Sparse Network Storage

Previous works aim to remove redundant weights (e.g., unstructured pruning) among different layers.
The trivial weights are set to zero based on different criteria. The ratio of zero-weight in the whole
network is regarded as sparsity ratio. Different approaches are compared based on their final test
accuracy with a given sparsity ratio. Different from this conventional fashion which restoring sparse
trained weights, we instead use fixed random weights with different masks to represent a network. To
compare these two paradigm, we calculate the required storage size as an integrated measurement.

Assuming we have a trained network with p as parameter numbers and r as sparsity ratio. Due to its
sparsity, we only need to restore the non-zero weight values accompanied with their position [13]
denoted as a binary mask. The storage cost can be separated into two parts, Cw for weight values and

8



Cm for mask given by

C = Cw + Cm. (10)

For conventional setting, Cw restores the values of kept sparse weights which is p · (1− r) for the
whole network. It needs to be restore in float format. Cm restores sparse positions of these weights,
which can be restored into compressed sparse column (CSC) or compressed sparse row (CSR) formats
with cost around 2p · (1− r) [13]. In our new paradigm, Cw records the values of the given random
weights. For example, the one-layer requires to record all weights of non-repetitive layers and one
prototype weights of all repetitive layers. MP requires to keep the values of layer with the largest
number of parameters. RP only requires to restore the values of a random vector with given length.
Cm is also for the sparse positions to record the selected subnetwork.

4.3.2 Compression Performance Validation

90 91 92 93 94 95 96 97
Size Compression Ratio (%)

74

76

78

80

82

84

86

88

90

92

94

96

Ac
c 

(%
)

Dense_d6
Random_d6
Minimum_d6
Ours_d6
Dense_d8
Random_d8
Minimum_d8
Ours_d8

Figure 5: Compression performance validation on
CIFAR10 dataset on ConvMixer backbone. Y-axis
is the test accuracy. X-axis means compression
ratio. Two pairs of comparisons are for different
depths shown in different colors. Straight line on
the top is the dense model performance. Curves
in different symbols represent baselines and our
method. For ConvMixer, our three points are based
on RP 1e-1, RP 1e-2, and RP 1e-3, respectively.

We test the compression performance on CI-
FAR10 and CIFAR100 datasets using Con-
vMixer with 6/8 depths, ResNet32, and
ResNet56 backbones. The compression ratio
is based on the storage size as we discussed in-
stead of the conventional pruning ratio. Since
we propose a new strategy to compress network,
we involve two sparse network training base-
lines in our experiments. Specifically, we train
a sparse network from scratch by removing ran-
dom weight and minimum magnitude weights.
For compression ratio, we set four settings for
baselines: 90%, 92%, 94%, and 96%. We di-
rectly refer to settings, MP, RP from Sec. 4.2 for
our paradigm. Their compression ratio is calcu-
lated using the same measurement as baselines.

In Fig. 4, we show 4 pairs of comparison based
on 2 backbones (ResNet32/ResNet56) and 2
datasets (CIFAR10/CIFAR100). Each pair in-
cludes dense model, 2 baselines with 4 com-
pression ratios, and our results in 3 ratios. Two
baselines are sparse network training by prun-
ing random weights and minimum magnitude
weights, respectively. For convenience, we do
not follow exactly the same compression ratios as baseline but directly use settings from Sec.4.2. For
ResNet, we use MP, RP 1e-1, and RP 1e-2. Their corresponding compression ratios are computed as
shown in figures. Experiments based on different networks and datasets show the similar conclusions
summarized as: 1) our method outperforms the baselines by a significant margin, with even higher
compression ratio; 2); Compared with conventional sparse network training where compressed model
performance decreases obviously along with increasing compression ratio, our method is relatively
robust to the compressed model size; 3) If we compare cross different models, we find compressed
small model by our method even performs better than baselines using larger model; 4) Network scale
affects the compression performance, compared with ResNet32, ResNet56 basically contains more
parameters and performance drop between compressed network with its dense counterpart is relatively
small. In Fig. 5, we show compression performance on CIFAR10 dataset using ConvMixer with depth
6 and 8. The settings are basically similar to Fig. 4. We can also draw the similar conclusions: 1) Our
method outperforms the baselines on ConvMixer with different depths; 2) Our method compresses
network into lower size but maintains higher performance.

As a summary, in Sec. 4, our experiments can be separated into two parts. Firstly, to validate our
PEMN, we investigate the representative potential of random weights which are used to fill in the
complete network structure using different proposed strategies. Secondly, the promising conclusion
(Sec. 4.2) for this investigation naturally leads to the newly proposed network compression paradigm.
Different from conventional fashion restoring sparse weights, we instead restore the fixed random
weights and different masks. Empirically, we validate the effectiveness of our new paradigm for

9



network compression. Our experiments involve diverse network architectures to demonstrate the
proposed paradigm can be generalized into different network designs.

5 Discussion and Conclusion

Discussion We summarize our intuitive logic and potential research direction in the future. Our
fundamental insight is motivated by Supermasks [44] and Popup [31] showing random network
encodes informative pattern by selecting subnetworks. They inspire us to understand neural network in
a decoupled perspective: the informative output is delivered by certain weight-structure combination.
Even if weights are fixed, the flexibility of learnable masks still provides promising capacity to
represent diverse semantic information. We are the first to fully explore the representative potential
of random weights, and practically, a new network compression paradigm is naturally established.
We further discuss some research directions in the future following this study. Firstly, compared
with conventional approaches need to record learned weights, our paradigm records random weights
which can be pre-accessed, can this property be used for improve the model security? In addition,
leveraging on the property that repetitive random weights existing in networks for our strategies, is it
possible to specifically design hardware deployment configurations to achieve further compression or
acceleration? Moreover, our PEMN is based on random initialized weights but cannot be directly
deployed on pretrained models, which are more powerful these days. How to further improve our
strategy on large-scale pretrained models is another interesting point to explore. We leave these topics
in our future work.

Conclusion We first explore the maximum representative potential of a set of fixed random weights,
which leverages different learned masks to obtain different feature mappings. Correspondingly, we
introduce our proposed Parameter-Efficient Masking Networks (PEMN). Specifically, we naturally
propose three strategies, one-layer, max-layer padding (MP), and random vector padding (RP), to fill
in a complete network with given random weights. We find that a neural network with even limited
unique parameters can achieve promising performance. It shows that parameters with fewer unique
values have great representative potential achieved by learning different masks. Therefore, we can
represent a complete network by combining a set of random weights with different masks. Inspired
by this observation, we propose a novel network compression paradigm. Compared with traditional
approaches, our paradigm can restore and transfer a network by only keeping a random vector with
masks, instead of recording sparse weights for the whole network. Since the cost of restoring a
mask is significantly lower than weight, we can achieve admirable compression performance. We
conduct comprehensive experiments based on several popular network architectures to explore the
random weights potential for PEMN and test the compression performance of our new paradigm. We
expect our work can inspire further researches for both exploring network representative potential
and network compression.

References
[1] S. Bai, J. Z. Kolter, and V. Koltun. Deep equilibrium models. NeurIPS, 32, 2019.

[2] Y. Bai, H. Wang, Z. Tao, K. Li, and Y. Fu. Dual lottery ticket hypothesis. arXiv preprint
arXiv:2203.04248, 2022.

[3] Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradients through stochastic
neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

[4] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. NeurIPS, 33:1877–1901,
2020.

[5] M. Dehghani, S. Gouws, O. Vinyals, J. Uszkoreit, and Ł. Kaiser. Universal transformers. arXiv
preprint arXiv:1807.03819, 2018.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical
image database. In CVPR, pages 248–255, 2009.

[7] T. Dettmers and L. Zettlemoyer. Sparse networks from scratch: Faster training without losing
performance. arXiv preprint arXiv:1907.04840, 2019.

10



[8] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[9] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for
image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[10] U. Evci, T. Gale, J. Menick, P. S. Castro, and E. Elsen. Rigging the lottery: Making all tickets
winners. In ICML, pages 2943–2952. PMLR, 2020.

[11] J. Frankle and M. Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

[12] A. Gaier and D. Ha. Weight agnostic neural networks. NeurIPS, 32, 2019.

[13] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

[14] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and connections for efficient
neural network. NeurIPS, 28, 2015.

[15] B. Hassibi and D. Stork. Second order derivatives for network pruning: Optimal brain surgeon.
NeurIPS, 5, 1992.

[16] B. Hassibi, D. G. Stork, and G. J. Wolff. Optimal brain surgeon and general network pruning.
In IEEE international conference on neural networks, pages 293–299, 1993.

[17] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In ICCV, pages 1026–1034, 2015.

[18] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016.

[19] S. Jastrzębski, D. Arpit, N. Ballas, V. Verma, T. Che, and Y. Bengio. Residual connections
encourage iterative inference. arXiv preprint arXiv:1710.04773, 2017.

[20] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[21] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[22] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut. Albert: A lite bert for
self-supervised learning of language representations. arXiv preprint arXiv:1909.11942, 2019.

[23] Y. Le and X. Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

[24] Y. LeCun, J. Denker, and S. Solla. Optimal brain damage. NeurIPS, 2, 1989.

[25] N. Lee, T. Ajanthan, and P. H. Torr. Snip: Single-shot network pruning based on connection
sensitivity. arXiv preprint arXiv:1810.02340, 2018.

[26] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning filters for efficient convnets.
arXiv preprint arXiv:1608.08710, 2016.

[27] I. Loshchilov and F. Hutter. Fixing weight decay regularization in adam. 2018.

[28] E. Malach, G. Yehudai, S. Shalev-Schwartz, and O. Shamir. Proving the lottery ticket hypothesis:
Pruning is all you need. In ICML, pages 6682–6691. PMLR, 2020.

[29] H. Mostafa and X. Wang. Parameter efficient training of deep convolutional neural networks by
dynamic sparse reparameterization. In ICML, pages 4646–4655. PMLR, 2019.

[30] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervision.
In ICML, pages 8748–8763. PMLR, 2021.

11



[31] V. Ramanujan, M. Wortsman, A. Kembhavi, A. Farhadi, and M. Rastegari. What’s hidden in a
randomly weighted neural network? In CVPR, pages 11893–11902, 2020.

[32] I. O. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai, T. Unterthiner, J. Yung, A. Steiner,
D. Keysers, J. Uszkoreit, et al. Mlp-mixer: An all-mlp architecture for vision. NeurIPS, 34,
2021.

[33] A. Trockman and J. Z. Kolter. Patches are all you need? arXiv preprint arXiv:2201.09792,
2022.

[34] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. NeurIPS, 30, 2017.

[35] C. Wang, G. Zhang, and R. Grosse. Picking winning tickets before training by preserving
gradient flow. arXiv preprint arXiv:2002.07376, 2020.

[36] H. Wang and Y. Fu. Trainability preserving neural structured pruning. arXiv preprint
arXiv:2207.12534, 2022.

[37] H. Wang, C. Qin, Y. Bai, Y. Zhang, and Y. Fu. Recent advances on neural network pruning at
initialization. arXiv e-prints, pages arXiv–2103, 2021.

[38] H. Wang, C. Qin, Y. Zhang, and Y. Fu. Neural pruning via growing regularization. arXiv
preprint arXiv:2012.09243, 2020.

[39] H. You, C. Li, P. Xu, Y. Fu, Y. Wang, X. Chen, R. G. Baraniuk, Z. Wang, and Y. Lin. Draw-
ing early-bird tickets: Towards more efficient training of deep networks. arXiv preprint
arXiv:1909.11957, 2019.

[40] Y. Zhang, H. Wang, C. Qin, and Y. Fu. Aligned structured sparsity learning for efficient image
super-resolution. NeurIPS, 34:2695–2706, 2021.

[41] Y. Zhang, H. Wang, C. Qin, and Y. Fu. Learning efficient image super-resolution networks via
structure-regularized pruning. In ICLR, 2021.

[42] Y. Zhang and Q. Yang. A survey on multi-task learning. TKDE, 2021.

[43] Z. Zhang and C. Jung. Recurrent convolutions: A model compression point of view. 2018.

[44] H. Zhou, J. Lan, R. Liu, and J. Yosinski. Deconstructing lottery tickets: Zeros, signs, and the
supermask. NeurIPS, 32, 2019.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes]
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]

12



(b) Did you describe the limitations of your work? [Yes] See supplementary material.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

supplementary material.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes] See supplementary material.
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes] See supplementary material.
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes] See supplementary material.
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 4.
(b) Did you mention the license of the assets? [Yes] See Section 4.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13



Appendix

A. Implementation Details

For all the backbones used in our experiments, we follow their default training settings. For Con-
vMixer [33], we use AdamW [27] optimizer with triangular learning rate scheduler. We set the
maximum learning rate as 0.05 with weight decay as 0.005. We set batch size as 512 and the number
of total epochs is 100. We use different configurations for hidden dimension (256/512) and depth
(6/8) in our experiments section. For ViT [9], we use Adam [20] optimizer with cosine learning rate
scheduler. We set the maximum learning rate as 0.0001. We set batch size as 256 and the number
of total epochs as 200. We use different configurations for hidden dimension (256/512) and depth
(6/8) in our experiments section. For ResNet [18], we follow the implementation configurations
in Popup [31]. Specifically, we use SGD optimizer with maximum learning rate 0.1 and cosine
scheduler. The weight decay and momentum are set as 0.0005 and 0.9. We train 100 epochs with
256 batch size. For the sparse selection to pick the subnetworks, we follow the optimal choice in
Popup and set it as 0.5 for our experiments. And we use kaiming uniform and kaiming normal [17]
to initialize the scores and random weights, respectively.

B. Limitations and Potential Negative Societal Impacts

Firstly, our study focuses on exploring the random weight potential and representing a neural network
with small storage cost. However, it cannot further help for accelerating the training and inference.
This is a good point for us to further explore. Secondly, our proposed network compression strategy
leverages on the representative potential of random weights with different masks, which benefits to
reducing storage cost. However, following this strategy, it is hard to take advantages of powerful
pretrained model these days. How to tailor our insight to large-scale pretrained model is another good
point to explore. To the best of our knowledge, our study has no potential negative societal impacts.

C. More Experimental Evaluations

We further add experiments for CIFAR100 [21] and Tiny-ImageNet [23] datasets using ConvMixer
as backbone to test our new network compression paradigm. The results are shown in Fig. 6. We
use 8 and 6 as depth number for CIFAR100 and Tiny-ImageNet datasets, respectively and other
settings follow the same mentioned above. The results in figure show that our compression strategy
outperforms the baseline methods and validate the effectiveness of our propose network compression
paradigm. We also conduct experiments on large-scale ImageNet [6] dataset using ResNet50 [18] as
backbone. For simplicity, we customize two ImageNet subset for convenient evaluation. We sample
100/200 classes from original ImageNet to construct our subsets. We compare our compression
strategy with magnitude pruning baseline and results are shown in Fig. 7. The results of our method
are promising and demonstrate its effectiveness on challenging ImageNet dataset.

D. The Results of Repeated Experiments

We further supplement the repeated experimental results. We supplement the main results from Fig. 3
and Fig. 4. We repeated each experiment three times and report mean and std. In Tab. 1, Tab. 2,
Tab. 3, Tab. 4, we provide the repeated results for Fig. 3. According to these results, we make several
conclusions: 1) Our experimental performance are generally consistent across different datasets and
different settings. The supplemented results follow the accuracy patterns and support the conclusions
provided in our draft; 2) ConvMixer is more stable than ViT backbone across different settings; 3)
Overall, along with the decreasing number of unique values in the network (from the left column to
the right column of tables), the performance variations increase correspondingly. The limited unique
weight values decreases the stability of the network. In Tab. 5, Tab. 6, we provide the repeated results
for Fig. 4. The first four columns show the compression baselines (the first / second items represent
random and magnitude pruning). Based on the results shown above, we find our strategies generally
outperform the model compression baselines and these results support our conclusion in the draft.

14



89 90 91 92 93 94 95 96 97
Size Compression Ratio (%)

53

55

57

59

61

63

65

67

69

71

73
Ac

c 
(%

)

Dense_8
Random_8
Minimum_8
Ours_8

(a) ConvMixer on CIFAR100 dataset.

89 90 91 92 93 94 95 96 97
Size Compression Ratio (%)

38

40

42

44

46

48

50

52

Ac
c 

(%
)

Dense_6
Random_6
Minimum_6
Ours_6

(b) ConvMixer on Tiny-ImageNet dataset.

Figure 6: Compression performance validation on CIFAR100/Tiny-ImageNet datasets on ConvMixer
backbone. Y-axis denotes the test accuracy. X-axis means the network size compression ratio.
The straight lines on the top are performance of dense model with regular training. Lines with
different symbol shapes denote different settings. Our three points are based on RP 1e-1, RP 1e-
2, and RP 1e-3, respectively. This figure shows that our proposed paradigm achieves admirable
compression performance compared with baselines. We can still maintain the test accuracy in very
high compression ratios.

91 92 93 94 95 96 97
Size Compression Ratio (%)

65

69

73

77

81

85

Ac
c 

(%
)

Dense_50
Minimum_50
Ours_50

(a) ResNet50 on ImageNet 100 subset.

91 92 93 94 95 96 97
Size Compression Ratio (%)

55

60

65

70

75

80

85

Ac
c 

(%
)

Dense_50
Minimum_50
Ours_50

(b) ResNet50 on ImageNet 200 subset.

Figure 7: Compression performance validation on ImageNet 100/200 subsets on ResNet50 backbone.
Y-axis denotes the test accuracy. X-axis means the network size compression ratio. The straight lines
on the top are performance of dense model with regular training. Lines with different symbol shapes
denote different settings. Our three points are based on RP 1e-1, RP 1e-2, and RP 1e-3, respectively.
This figure shows that our proposed compression strategy achieves promising performance on
challenging ImageNet dataset compared with baselines.

15



Table 1: Repeated experimental results for ConvMixer 6-block in subfigure (a) of Fig. 3

Dim Mask One-layer MP RP_1e-1 RP_1e-2 RP_1e-3 RP_1e-4 RP_1e-5

256 89.31 (0.16) 88.80 (0.11) 88.97 (0.08) 88.70 (0.21) 88.89 (0.13) 88.52 (0.15) 85.76 (0.34) 81.01 (0.38)
512 91.90 (0.03) 91.87 (0.14) 92.02 (0.02) 92.07 (0.12) 92.13 (0.16) 92.05 (0.03) 90.55 (0.14) 87.40 (0.20)

Table 2: Repeated experimental results for ConvMixer 8-block in subfigure (b) of Fig. 3.

Dim Mask One-layer MP RP_1e-1 RP_1e-2 RP_1e-3 RP_1e-4 RP_1e-5

256 90.42 (0.09) 90.47 (0.04) 90.65 (0.11) 90.63 (0.14) 90.59 (0.06) 90.06 (0.22) 87.64 (0.19) 82.34 (0.26)
512 92.69 (0.11) 92.71 (0.06) 93.21 (0.05) 92.90 (0.07) 92.88 (0.15) 92.90 (0.07) 91.71 (0.20) 87.40 (0.22)

Table 3: Repeated experimental results for ViT 6-block in subfigure (c) of Fig. 3.

Dim Mask One-layer MP RP_1e-1 RP_1e-2 RP_1e-3 RP_1e-4 RP_1e-5

256 76.35 (0.15) 76.21 (0.14) 76.70 (0.10) 77.01 (0.17) 76.76 (0.21) 76.80 (0.20) 64.84 (0.21) 65.76 (0.23)
512 80.73 (0.21) 81.56 (0.25) 81.50 (0.11) 81.87 (0.06) 81.25 (0.13) 80.98 (0.16) 79.17 (0.25) 79.00 (0.14)

Table 4: Repeated experimental results for ViT 8-block in subfigure (d) of Fig. 3.

Dim Mask One-layer MP RP_1e-1 RP_1e-2 RP_1e-3 RP_1e-4 RP_1e-5

256 79.21 (0.09) 79.54 (0.16) 79.23 (0.22) 79.30 (0.08) 79.62 (0.15) 79.28 (0.14) 73.79 (0.26) 71.71 (0.28)
512 83.44 (0.17) 83.50 (0.26) 83.66 (0.12) 83.67 (0.13) 83.25 (0.20) 83.34 (0.19) 76.73 (0.31) 78.84 (0.29)

Table 5: Repeated experimental results for ResNet56/32 on CIFAR10 in subfigure (a) of Fig. 4

Network pr0.9 pr0.92 pr0.94 pr0.96 Ours-MP Ours-RP_1e-1 Ours-RP_1e-2

ResNet56 86.35 (0.22) / 86.74 (0.28) 85.55 (0.14) / 86.01 (0.17) 85.01 (0.19) / 84.62 (0.27) 81.93 (0.16) / 82.04 (0.18) 88.13 (0.19) 88.36 (0.24) 87.97 (0.21)
ResNet32 84.21 (0.13) / 84.22 (0.05) 83.29 (0.11) / 83.60 (0.20) 82.08 (0.16) / 81.56 (0.28) 79.36 (0.13) / 79.12 (0.15) 86.33 (0.14) 86.58 (0.09) 86.39 (0.18)

Table 6: Repeated experimental results for ResNet56/32 on CIFAR100 in subfigure (b) of Fig. 4.

Network pr0.9 pr0.92 pr0.94 pr0.96 Ours-MP Ours-RP_1e-1 Ours-RP_1e-2

ResNet56 55.21 (0.36) / 54.01 (0.38) 51.96 (0.33) / 52.54 (0.16) 49.72 (0.18) / 49.70 (0.25) 44.00 (0.13) / 44.18 (0.26) 56.39 (0.29) 56.58 (0.21) 55.84 (0.27)
ResNet32 49.21 (0.29) / 49.35 (0.14) 47.36 (0.11) / 47.38 (0.07) 43.70 (0.41) / 44.60 (0.29) 39.78 (0.23) / 39.54 (0.37) 51.76 (0.25) 50.78 (0.30) 51.94 (0.19)

16


	Introduction
	Related Works
	Sparse Network Training
	Random Network Selection
	Weight Sharing

	Parameter-Efficient Masking Networks
	Instinctive Motivation 
	Sparse Selection
	Parameter-Efficient Strategy
	One-Layer

	Random Weights Padding

	Experiments
	Preparation
	Representative Random Weights in PEMN
	A New Model Compression Paradigm
	Sparse Network Storage
	Compression Performance Validation


	Discussion and Conclusion

