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Abstract— Timely assessment of crop maturity contributes to
optimized harvesting schedules while limiting food loss/waste at
the farm level. Maturity assessments are typically performed via
costly and time-consuming in situ methods. This study aimed
to evaluate pod size crop maturity using imaging spectroscopy
via unmanned aerial systems (UASs), as well as identifying
discriminating wavelengths, using snap bean as a proxy crop.
The research utilized a UAS-mounted hyperspectral imager in
the visible-to-near-infrared region. Two years’ worth of data were
collected at two different geographical locations for six different
snap bean cultivars. Our approach consisted of calibration
to reflectance, vegetation detection, noise reduction, creating
classification bins, and feature selection. We used our previously
published feature selection library, Jostar, and utilized ant colony
optimization and simulated annealing to detect five spectral
features and Plus-L Minus-R to identify one to ten features.
We utilized decision trees and random forest classifiers for the
classification task. Our findings show that, given the proper
wavelengths, accurate pod maturity assessment is feasible for
large-sieve cultivars (F1 score = 0.79–0.91), separating sieve
sizes between ready-to-harvest and not ready-to-harvest pods.
These spectral features were in the ∼450, ∼530, ∼660, 700–720,
∼740, and ∼760 nm regions. This bodes well for the potential
extension of results to an operational, multispectral sensor,
tuned with the identified bands, thereby negating the need
for a costly hyperspectral system. However, this proposition
mandates further investigation, including data acquisition from
geographical locations with variable climates, and quantifying
noise for the hyperspectral imager to compare results with noisier
datasets.

Index Terms— Classification, feature selection, hyperspectral
imaging, machine learning, maturity assessment, pod size, preci-
sion agriculture, snap bean, unmanned aerial system (UAS).
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I. INTRODUCTION

UP TO 30% of food waste occurs at the farm level when
the harvested produce does not match the required qual-

ity, quantity, and dimensions [6]. The assumption of uniform
distribution of growth across a field furthermore is far from
reality, resulting in overmature and undermature harvested
produces. It, therefore, stands to reason that, if farmers and
growers knew when and where to harvest, crop production
in terms of both quality and quantity could be optimized.
However, most current protocols for crop maturity assessment
require time- and resource-intensive in situ approaches, thus
indicating a need for a rapid, remote, nondestructive approach.

Remote sensing (RS) can satisfy these requirements by
collecting data of a target area via unmanned aerial sys-
tems (UASs) for a range of different sensing modalities. These
modalities vary from light detection and ranging (LiDAR),
color (RGB), and synthetic aperture radar (SAR) to spectral
systems (multispectral and hyperspectral), with applications
spanning climate monitoring, forest inventory management,
and crop assessment, among others [23], [41], [44], [55],
[65], [67], [73]. In terms of spectral systems, hyperspectral
imagery (HSI) collects pixel-level spectral information within
a specific domain of the electromagnetic energy, spanning to
hundreds of contiguous bands (or wavelengths) [39]. Hyper-
spectral sensors can play a key role in studying crops since
the captured spectral response, in theory, is representative
of a crop’s biochemical composition and intercellular and
molecular structure, especially in the visible-to-near-infrared
(VNIR) spectral region [18], [56], [68]. In other words, the
change in biochemical and structural features can be observed
in the crop spectral signature. This physiological link between
crop status and the spectral response has motivated researchers
to also assess crop maturity through the lens of HSI. Studies
focused on crop maturity fall into two categories: 1) maturity
assessment based on biophysical indicator estimation, such
as dry matter (DM), moisture content (MC), firmness, total
soluble solids (TSSs), and total acidity (TA) [4], [5], [20],
[33], [40], [45], [49], [51] and 2) more general crop maturity
stage classification [17], [22], [42], [75]. The former approach
requires laboratory measurements as ground-truth data (more
labor-intensive to obtain), while ground-truth data collection
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for the latter approach is relatively straightforward and less
complex (i.e., class labels). However, an often overlooked
aspect of HSI data is the need for robust preprocessing,
most notably in terms of noise reduction, given the narrow
bandwidths [10].

Hyperspectral data are potentially noisy and consist of
highly correlated spectral features that need to be subselected
to fit the objective. This mandates preprocessing of HSI prior
to input to predictive models [47], [53]. The noise in hyper-
spectral data also could be due to inherent instrument noise,
such as quantization noise and photon noise [21], [32], [52].
There have been numerous studies that shed light on hyper-
spectral denoising using wavelet transforms [11], [28], [37],
total variation (TV) models [2], [70], and deep learning mod-
els [29], [72]. Among these algorithms, the method proposed
by Chen and Qian [11], utilizing the principal component
analysis (PCA) and wavelet transforms, has gained consid-
erable attention although it requires manual selection of the
number of principal components (PCs) to retain. Second, the
collected hyperspectral data are typically highly correlated
(especially in adjacent bands [35]), meaning that one variable
could be determined by another with a high degree of accuracy.
Such correlated features can cause overfitting in machine
learning models [25]. Often, the correlation coefficient (R)
is used to determine the extent to which two variables are
correlated [8]. Third, even after decorrelation, large number of
features may not be explanatory in terms of the objective being
studied, i.e., this step calls for feature selection methods [36].
Feature selection approaches have proven effective for high-
dimensional data and fall into three categories, namely, filter,
wrapper, and embedded methods [63]. Filter methods provide
a score for each variable and explain how much each variable
contributes to the objective function (i.e., reference values),
with examples such as mutual information, variance, and
RReliefF [7], [54]. Score calculation is computationally cheap,
but filter methods are not as accurate as other approaches
since they do not take into account the relationship between
features. On the other hand, wrapper methods initially rely
on a trial-and-error approach while expanding on that via
their particular optimization algorithm. Wrapper methods have
proven to be more accurate since they take account of the
interaction between features even though they are compu-
tationally expensive. Examples of wrapper methods include
sequential feature selection (SFS [3]), simulated annealing
(SA [60]), ant colony optimization (ACO [14]), and genetic
algorithm (GA [66]) approaches. Embedded methods, as the
name suggests, provide a calculated score embedded in the
training process [43]. Although these methods are faster when
compared to wrapper methods, they may not be as accurate.
The abovementioned preprocessing techniques have appeared
in the literature and were employed by various studies for the
assessment of crop maturity using hyperspectral data.

A large body of literature consists of maturity estima-
tion based on biophysical indicators, while there is a gen-
eral lack of research regarding crop maturity classification.
Yang et al. [69] conducted blueberry growth stage classifi-
cation (young, intermediate, mature stage) using ground-
based HSI in the VNIR region. The study employed three

different classifiers, namely, the support vector machine
(SVM), the K-nearest neighbor (KNN), and AdaBoost, along
with Kullback–Leibler divergence (KL divergence), hierar-
chical dimensionality reduction, and non-Gaussian measures
as band selection methods. Their findings show accuracies
above 88% for the classification of blueberry growth stages.
Recently, Singh et al. [57] used UAS-based HSI (VNIR) for
canola pod maturity estimation, at five different pod sieve
sizes, for five canola genotypes. Their results show that their
introduced vegetation index (VI) (canola pod maturity index
[CPMI]) can estimate canola pod moisture with a coefficient
of determination (R2) as high as 0.98, with only three selected
bands. Tao et al. [59] estimated above-ground biomass (AGB)
and leaf area index (LAI) of winter wheat at four different
growth stages using HSI (VNIR) and concluded that the plant
biochemical index (PBI) and linear combination index (LCI)
had the highest correlation coefficient with the mentioned VIs.
Their findings showed that the flowering stage had the highest
accuracies, with R2 > 0.65 and normalized root-mean-square
error (nRMSE) as low as 14%. Zou et al. [75], in turn, used a
laboratory-based HSI (VNIR) system to assess peanut maturity
for two classes (mature versus immature) over two years of
data via a fully constrained least squares unmixing approach.
Their findings show accuracies above 83% for the testing set.

The majority of crop maturity assessment studies are limited
to one crop cultivar, restricted to one geographical location
for data collection, and a single temporal evaluation of the
crop. Moreover, little research has been done regarding the
maturity classification of crops using hyperspectral imaging.
With a market value of approximately $300 million in 2019,
snap bean (Phaseolus vulgaris) is considered one of the largest
crops in the United States [1]. Snap bean’s important role
in our everyday diet [46], along with its short growth period
(55–65 days) makes this crop an ideal proxy crop for growth
maturity assessment. However, the snap bean has not received
much attention in the literature. Here, we focus on snap bean
(as a proxy crop) over six different cultivars toward addressing
the hypothesis that snap bean maturity (pod size) assessment
can be addressed with HSI, given that maturity is reflected
by canopy-level spectral features. The objectives of this study
were to identify discriminating spectral features via feature
selection methods, corresponding best with the classification
of maturity stages of snap bean, and evaluate the feasibility of
using machine learning algorithms for classification between
different crop maturity stages, in terms of snap bean pod size.

II. MATERIALS AND METHODS

A. Study Area

This study was conducted at two geographical locations,
Geneva, NY, USA (42◦49’53.0” N, 77◦00’48.2” W), for sum-
mer 2019, and Seneca, NY, USA (42◦51’59.2” N, 77◦01’45.8”
W), for summer 2020. The 2019 dataset consisted of 24 plots,
and the 2020 dataset contained 18 experimental plots, with
each plot being 1.5 m long and 0.75 m wide. Six different
cultivars of snap bean, namely, Venture (L1), Huntington
(L2), Colter (F1), Cabot (F2), Flavor-sweet (W1), and Denver
(W2), were sowed in two experimental fields, for both years,
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Fig. 1. Plot outlines and corresponding dimensions for (a) 2019 and (b) 2020 datasets. The snap bean cultivars were L1: Venture; L2: Huntington;
F1: Colter; F2: Cabot; W1: Flavor-sweet; and W2: Denver.

to ensure integration between different varieties, i.e., two from
large-sieve cultivars (L1 and L2), two from four-sieve cultivars
(F1 and F2; the largest pod size for this group is sieve size
four), and two from whole bean cultivars (W1 and W2). Each
cultivar’s plot was replicated four times for the 2019 dataset
and three times for the 2020 dataset. Fig. 1 shows the RGB
representation of the experimental fields and the outline of
designated plots. The total trial dimensions were 99×12 m and
52 × 23 m for 2019 and 2020 datasets, respectively.

B. Plant Growth Characteristics

For both datasets, seeds were sowed at 20–26 plants/m at
an approximate depth of 3.8 cm. At planting, fertilizer with a
ratio of 15:5:5 (N:P:K) with a rate of 335 kg/ha was applied.
Pod size ground-truth data were collected concurrently with
the flights. At each evaluation, a 3 m sample of the plot
was selected, and pods from plants were further investigated

Fig. 2. Sieve gauge used for pod sieve size measurement.

for sieve size, as a maturity indicator. To classify pods into
sieve sizes, pods are slid across cavities of a sieve gauge,
as depicted in Fig. 2. Six sieve sizes (S1–S6) corresponding
to the following sizes were determined for the pods: S1 <
5.8 mm; 5.8 mm < S2 < 7.5 mm; 7.5 mm < S3 < 8.5 mm;
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TABLE I

INFORMATION ON DATA COLLECTION FOR 2019 AND 2020 DATASETS DURING SNAP BEAN POD FORMATION STAGES

8.5 mm < S4 < 9.7 mm; 9.7 mm < S5 < 10.9 mm;
and S6 > 10.9 mm. Total weight per sieve size, for the top
two largest sieve sizes identified, was logged for each cultivar
using (Model “ES6R,” OHAUS Corporation, Parsippany, NJ,
USA; 0.002-kg precision). Consequently, the sieve size with
the largest weight was assigned to the plot’s class.

C. Data Collection

A hyperspectral imager (“Nano Hyperspec” model, Head-
wall Photonics, Fitchburg, MA, USA) was mounted on a
DJI Matrice-600 quadcopter. The hyperspectral imager is a
pushbroom sensor with a slit of 640 pixels across and a full-
width at half-maximum (FWHM) of 6 nm. Five flights were
conducted for both 2019 and 2020 datasets during the crop pod
formation stage (i.e., the reproductive stage). Table I shows
the flight data collection information, along with days after
planting (DAP). The weather condition for all flights was
uniformly sunny or uniformly cloudy (i.e., minimal change
in illumination conditions).

D. Data Preprocessing and Analysis

Five major steps, as depicted in Fig. 3, were employed for
preprocessing and analysis of the collected HSI data. The data
preprocessing stage included calibration to reflectance, plot
extraction and vegetation detection, noise reduction, and data
preparation. The data analysis stage included applying our
previously introduced feature selection library (Jostar [24])
to preprocessed data. Each of the mentioned stages will be
explored next.

1) Calibration to Reflectance: The empirical line method
(ELM [58]) was utilized for calibration to reflectance. Three-
and four-point configurations for the ELM approach were
conducted for 2019 and 2020 datasets, respectively. This
method forces the drone spectra to match those from the field
spectra (via a spectroradiometer) by applying a gain and an
offset to each band. We utilized a portable spectroradiometer
(“HR-1024i” model, Spectra Vista Corporation, Poughkeepsie,
NY, USA) for collecting the field spectra. The resulting
hyperspectral data cube, in reflectance, was then passed to
the next step for plot extraction and vegetation detection.

2) Plot Extraction and Vegetation Detection: Distinguish-
able pink markers were placed on the northeast end of
each plot. Marker positions, along with the captured ground
sampling distance (GSD), were used to automatically define
regions of interest for the detection of plot boundaries. After
extracting plots from the hyperspectral data cube, we chose
the spectral angle mapper (SAM [71]) for vegetation detection
(formula shown in Fig. 3) since it is relatively insensitive
to changes in illumination [34]. SAM calculates the cosine
similarity angle between two vectors, namely, a reference and
an input vector. The input vector was a spectrum from the
hyperspectral data, and the reference vector is generally drawn
from a spectral library, imagery samples, or ground data [74].
In this study, we used the average spectrum of our previously
published spectral library of more than 1000 samples of snap
bean, captured in a greenhouse [22]. A threshold (θ ) with
a value of 0.3-rad (chosen by trial and error) was used to
separate the vegetation from the background. The identified
vegetation spectra were then passed to the noise reduction
step.

3) Noise Reduction: The noise reduction stage consisted
of two steps. First, since the signal-to-noise ratio (SNR)
in the detector fall-off regions was lower than in other
domains, we removed bands in the 400–450 and 900–1000 nm
domains. This, in turn, reduced the number of bands
from 272 to 202. We then employed the spectral denoising
approach by Chen and Qian [11], as described in Section I.
This approach uses PCA and transforms the spectral data to
the PC space. Subsequently, a number of crucial PCs are
retained, and the rest are passed to the spectral denoising
algorithm. In the published work, the authors select the number
of retained PCs via visual assessment of the projected data
in the PCA spatial space. We aimed to utilize the proposed
method only in the spectral domain (1-D) and not the spatial
domain. As a result, visual assessment of hundreds of bands
would be impossible, and thus, a more automated approach
was needed. Two extensively used methods for retaining top-k
PCs, namely, the minimum average partial (MAP [62]) and
eigenvalue greater than one (Kaiser [31]), and, thus, were
utilized and compared in this study. The identified k PCs were
retained and (p-k) PCs were then passed to dual-tree wavelet
complex transform at five different levels. The threshold
method, proposed by Chen and Qian [11], then was applied
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Fig. 3. Flowchart of the methods section from calibration to reflectance to data analysis. BG: background and VT: vegetation.

to the high-pass wavelet coefficients as follows:

d j,k = d j,k max

(
0,

(
1 − thr2

S2
j,k

))
(1)

where d j,k is the j th wavelet coefficient of size k, S2
i, j =

(|d j,k−1|2 +|d j,k|2+|d j,k+1|2)/3 is the average d j window with
size three centering at k, thr = (2σ 2

n log n)1/2 is the universal
threshold, and σ is the noise approximate [13], [26]. Prior to
passing the clean spectra to the final analysis stage, data were
prepared for analysis.

4) Categorization of Data Into Sieve Size Bins: A thousand
spectra from each noise-free, vegetation sieve size class were
randomly sampled, to accelerate training. Consequently, four
different classification bins, B1–B4, were organized for the
final objective: B1 for determining the classification perfor-
mance between S1 − S2, S3 − S4, and S5 − S6 (class0 =
S1 − S2, class1 = S3 − S4, and class2 = S5 − S6);
B2 for assessing separation between S1 − S3 and S4 − S6
(class0 = S1− S3 and class1 = S4− S6); B3 for investigating
classification efficiency between S1−S4 and S5−S6 (class0 =
S1 − S4 and class1 = S5 − S6); and B4 for evaluating

separation between each sieve size (class0 = S1, class1 = S2,
class2 = S3, class3 = S4, class4 = S5, and class5 = S6).
The above information is schematically depicted in Fig. 3.
It should be noted that the 2020 data lacked S6 for all cultivars;
thus, the B4 would accordingly change to distinguish between
S1 − S4 and S5. We avoided changing the naming of the
sieve size bins hereafter. Finally, data bins were balanced being
passed to the data analysis step.

5) Data Analysis: The first step of the data analysis stage
is data decorrelation, followed by normalization. The top-20
decorrelated features were retained and scaled to a 0–1 range.
The reason for selecting top-20 decorrelated features (based
on Pearson’s correlation coefficient, in the descending order),
and not performing subsetting via thresholding per Pear-
son’s correlation coefficient, was to ensure that the selec-
tion process occurred uniformly across different data bins
(i.e., features are being drawn from independent variables
populations of the same size). In this study, we utilized
random forests (RF) and decision tree (DT) classifiers for our
classification objective. For each data bin, a ratio of 70%–30%
was used for training and testing splits, in a stratified-random
fashion.
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TABLE II

OPTIMIZATION MODELS, CORRESPONDING PARAMETERS, AND ASSOCIATED VALUE RANGES AS IDENTIFIED FOR HYPERPARAMETER TUNING

Next, we used our previously published feature selection
library (Jostar [24]). ACO and SA optimization algorithms,
embedded in Jostar, were utilized to detect only five dif-
ferentiating features, while Plus-l Minus-R (LRS) was used
to identify one to ten features while maximizing the F1
score [50]. ACO and SA models’ parameters were tuned for
200 iterations prior to running the final model (see Table II),
and the LRS method’s parameters were set to L = 3 and
R = 2, thus, without a need for hyperparameter tuning. We opt
to maximize the F1 score for all classification tasks since the
F1 score takes into account the impact of both precision and
recall and, thus, is easier to interpret compared to examining
two metrics separately (i.e., precision and recall). The F-1
score, confusion matrices, and ROC curves were reported.

E. Comparison With VIs

Finally, in order to prove the robustness and reliability of the
proposed approach, we compared our results with eight most
commonly used narrowband VIs, namely, enhanced VI (EVI),
green chlorophyll index (CIgreen), red edge chlorophyll index
(CIRed Edge), normalized difference VI (NDVI), normalized
difference red edge index (NDRE), photochemical reflectance
index (PRI), ratio VI (PRI), and the visible atmospherically
resistant index (VARI). Depicted in Table III is the stated VIS
along with their formula. The mentioned VIs were only ran for
comparison with the best performing model between ACO and
SA (five features only), across the three mentioned datasets
(i.e., 2019, 2020, and 2019-2020).

F. Software

ENVI software (version 5.4) was used for calibra-
tion to reflectance. The feature selection library, Jostar
(https://github.com/amirhszd/jostar [24]), was employed in
Python 3.6 [61], while the Scikit-learn library was utilized
for RF and DT classifiers [48].

III. RESULTS

The results section is divided into three subsections:
1) the descriptive analysis provides information on normality
assessment and correlation evaluation between features; 2) the
results for ACO and SA optimization models, identifying
only five features, are presented; and 3) results for the LRS
optimization model, exploring the choice of one to ten features
from the given space, are provided.

TABLE III

NARROWBAND VIS FOR POD MATURITY ASSESSMENT OF SNAP BEAN

A. Descriptive Analysis

Normality and correlation analyses were performed, on each
data collection day, after noise removal, to develop a robust
approach that can reliably be based on either parametric
or nonparametric methods. We chose to depict correlation
and normality results for the last flight collection day of
each dataset since test results were similar across dates (see
Fig. 4). It can be observed from the correlation matrices
that spectral features that are far apart in terms of wave-
length are exhibited lower correlations, as expected; see, for
example, 450–550 nm with 750–900 nm and 600–725 nm
with 750–900 nm. A graphical evaluation of Q–Q plots of
2019 and 2020 datasets showed that both datasets are entirely
multivariate nonnormal.

Table IV presents plot sieve size counts for the 2019 and
2020 datasets. It can be seen that the 2020 dataset was higher
in number for sieve size 5 but lower for sieve sizes 2 and 3.
This substantial discrepancy was ascribed to different flight
plans during the respective seasons, as flights occurred when
the illumination conditions were uniform, with an accompa-
nying low chance of precipitation.

B. ACO and SA

1) 2019 Data Results: Results for five selected features for
all models and sieve size bins are depicted in Fig. 5. The
Kaiser denoising approach outperformed the MAP denoising
approach in all cases, for both ACO and SA optimization
models. Looking at Fig. 5(b), we can see that the RF model
outperformed DT, with the highest performing accuracy of
F1 = 0.85 for B3, with B2 next with F1 = 0.77, and the
lowest accuracy of F1 = 0.30 for B4. The B3 test bin arguably
is most useful for differentiating between ready-to-harvest
and not ready-to-harvest in the case of the large cultivars
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Fig. 4. Correlation matrices and Q–Q normality plots for (a) and (b) 2019 and (c) and (d) 2020 datasets on the final flight dates for each season.

(Venture and Huntington). The results from B2 proved to be
more inclusive, determining ready-to-harvest versus not ready-
to-harvest, for both large cultivars (Venture and Huntington)
and four sieve cultivars (Cabot and Colter). However, it should
be noted that large cultivars are considered mature when they
reach sieve sizes 5 and 6. The bagging of size 4 sieves along
with 5 and 6, thus, resulted in a practical error when scheduling
maturity for large cultivars.

We chose to depict confusion matrices for the test set of
the most and least accurate performing optimization method,
classifier, and denoising methods. Fig. 6 shows the confusion
matrices for RF-K aiser -B3 and DT -M AP-B4, via the SA
model. It is clear from Fig. 6(a) that the distribution of error
between classes was balanced, and the confusion matrix was
highly diagonal, with an AUC of 0.91. Fig. 6(b), representing
DT -M AP-B4 via the SA model, provides helpful insight
regarding the distribution of errors between different classes
(sieve sizes). It is evident that the confusion matrix could be
divided into two smaller sections (i.e., square matrices), one
encompassing class0 to class3 (S1−S4), and the other incorpo-
rating class4 to class5 (S5 − S6), indicating that this problem
could be distilled into a binary problem for maximum per-
formance, further demonstrating why B3 outperformed other
models. On another note, class4 and class5, corresponding
to S5 and S6, respectively, were largely misclassified across

TABLE IV

PLOT SIEVE SIZE COUNTS FOR 2019 AND 2020 SNAP BEAN DATASETS

these two classes, and the same was true for class0 and
class1 corresponding to S1 and S2, respectively (i.e., the
spread of error). However, class2 and class3, corresponding
to S3 and S4, exhibited a wider spread in terms of error.

Table V lists the identified wavelengths for the 2019 dataset
for the best performing bin (B3). These wavelengths reside in
the green, red, and near-infrared spectral regions with wave-
lengths at ∼530, ∼620, ∼660, ∼720, ∼740, and ∼760 nm.
A number of the selected wavelengths, such as 759 and
766 nm, are in close proximity, thus a higher chance of
them being correlated. This is not desirable in a commercial
platform, and we believe that the algorithm could perform
almost similarly with fewer than five bands, which is also
why we approached this study with a two-level analysis, i.e.,
five features versus one to ten features.

2) 2020 Data Results: Fig. 7 shows results for five selected
features across all models and sieve size bins. At first glance,
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TABLE V

RESULTS FOR THE ACO AND SA 2019 DATASETS FOR FIVE SELECTED WAVELENGTHS AND THE BEST-PERFORMING SNAP
BEAN SIEVE SIZE BIN (B3), DT AND RF, AND KAISER AND MAP DENOISING METHODS

Fig. 5. (a) ACO and (b) SA 2019 dataset F1 score results for five
selected features through ACO and SA optimization methods, for DT and
RF classifiers, and Kaiser and MAP denoising methods, across four bins.
Note that B3 outperforms others.

it can be noted that the 2020 dataset outperformed the
2019 dataset. Results from both ACO and SA optimization
models were similar, with SA marginally outperforming ACO
in the RF-K aiser subsets. The SA-RF-K aiser -B3 test set
performed most accurate at F1 = 0.91. These results again
underscore the feasibility of the introduced algorithms for the
maturity assessment of snap bean.

Fig. 8 shows the confusion matrix of the most accurate test
set (SA-RF-K aiser -B3) for the 2020 dataset. It is evident
that class0 or (1, 2, 3, 4) exhibited a lower error of omission

Fig. 6. ACO and SA 2019 dataset confusion matrices and ROC curve for
five features on (a) R F-K aiser on B3 and (b) DT − M AP on B4 both via
the SA model.

than those of class1 (6.7% compared to 12%). However,
the overall ROC curve generated a superior AUC = 0.96.
Table VI demonstrates the five selected wavelengths for the
best performing sieve size bin (B3) on the 2020 dataset. The
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Fig. 7. ACO and SA 2020 dataset results for the F1 score for five identified
wavelengths for DT and RF classifiers, and Kaiser and MAP denoising
methods, across all four sieve size bins, for the 2020 dataset. Note that
B3 outperformed other tests (sieve size bins).

Fig. 8. ACO and SA 2020 dataset ROC and confusion matrix results for
five identified wavelengths and the best performing test: R F-K aiser for the
snap bean B3 sieve size bin via the SA model.

identified bands were located in the ∼450, ∼640, ∼720, ∼740,
∼760, and ∼850 nm spectral regions. The wavelength at
846 nm, only recurring in RF-M AP tests, was not identified
in the 2019 dataset.

3) 2019-2020 Data Results: The results for five selected
features for the combined 2019-2020 dataset are presented
in Fig. 9. The two combined datasets performed worse,
in terms of accuracy, than when evaluated individually.

Fig. 9. (a) ACO and (b) SA 2019-2020 F1 score results for the five identified
wavelengths via the ACO and SA methods for DT and RF classifiers, and
Kaiser and MAP denoising methods for all four snap bean sieve size bins.

The best-performing model again was the SA-RF-K aiser -B3
with F1 = 0.79.

Fig. 10 shows the confusion matrix and the ROC curve for
the combined 2019-2020 dataset for the SA-RF-K aiser -B3
test set, i.e., the most accurate results. There was a larger
error of omission for class1 or (5, 6) sieve sizes (27%)
compared to class0 or (1, 2, 3, 4) sieve sizes (16%). The ROC
curve generated an AUC = 0.84 for this test, which deemed
satisfactory. Table VII lists the selected wavelengths for the
two optimization models (ACO and SA) across two classifiers
and two denoising methods for the B3 sieve size bin. It is
evident that wavelengths in ∼450, ∼530, ∼590, ∼620, ∼640,
∼720, ∼760, and ∼860 nm were recurrent. Wavelengths in the
near-infrared region were repeated more frequently compared
to those identified from each dataset separately.

C. LRS

1) 2019 Data Results: Table VIII shows the F1 score for
the approach targetting one to ten selected wavelengths across
all sieve size bins using DT and RF, via Kaiser and MAP
denoising schemes. We observed that: 1) after a certain number
of selected wavelengths, appending more wavelengths either
improves the accuracy marginally or is detrimental to the
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TABLE VI

RESULTS FOR THE ACO AND SA 2020 DATASETS FOR FIVE IDENTIFIED WAVELENGTHS AND THE BEST PERFORMING SNAP BEAN
SIEVE SIZE BIN (B3) USING DT AND RF CLASSIFIERS, AND KAISER AND MAP DENOISING METHODS

TABLE VII

ACO AND SA 2019-2020 DATASETS FOR FIVE SELECTED WAVELENGTHS AND THE MOST ACCURATE SIEVE SIZE BIN, B3,
USING DT AND RF CLASSIFIERS, AND KAISER AND MAP DENOISING METHODS

Fig. 10. ACO and SA 2019-2020 confusion matrix and ROC curve for
five identified wavelengths for the best-performing test R F-K aiser on the
B3 snap bean sieve size bin via the SA model.

overall classification performance and 2) RF-K aiser outper-
formed other classifiers and denoising methods. Almost all
tests started to plateau in accuracy when exceeding three to six
selected wavelengths. We chose to depict the Pareto frontier
of the most accurate test (RF-K aiser -B3), along with the
corresponding selected wavelengths in Fig. 11. As the num-
ber of wavelengths increased, the algorithms selected bands
that potentially could be slightly correlated, thus the slight
improvement in the F1 score; this was expected, as noted
previously (see Section III-B1). Wavelengths for three and four
selected features were found to be most discriminating, yet not
in close spectral proximity. Three identified wavelengths at
∼760, ∼710, and ∼450 nm proved discriminating with F1 =
0.82. Moreover, four wavelengths at ∼766, ∼720, ∼740, and

Fig. 11. LRS 2019 dataset Pareto frontier for one to ten selected bands on
R F-K aiser-B3. Notice the trivial improvement beyond four selected bands.

∼660 nm, with an F1 = 0.84, were found the most useful for
differentiating the 2019 dataset. The corresponding confusion
matrix for this test is depicted in Fig. 12, demonstrating a
highly diagonal matrix with similar errors of omission for both
classes, and a robust AUC = 0.90.
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TABLE VIII

LRS 2019 DATASET F1 SCORES FOR ONE TO TEN SELECTED FEATURES ACROSS ALL TESTS. NOTICE THE VARIABLE (LIMITED)
EFFECT ON THE PERFORMANCE BY ADDING FEATURES ABOVE THREE TO SIX BANDS

Fig. 12. LRS 2019 dataset confusion matrix for four selected bands on
R F-K aiser-B3.

2) 2020 Data Results: Table IX shows the F1 score results
for the 2020 data when selecting one to ten wavelengths. It is
evident that, beyond four to six wavelengths, the algorithm
performance either decreased or increased minimally. The
best-performing model was RF-K aiser -B3 with F1 = 0.91 at
five selected wavelengths. Fig. 13 displays the Pareto frontier
for the best performing model (RF-K aiser -B3) over the
number of bands selected. It can be observed that the model
built upon three highly uncorrelated wavelengths, i.e., ∼760,
∼715, and ∼452 nm, with F1 = 0.87, up to five wavelengths,
after which the performance plateaued. The identified five
wavelengths were ∼760, ∼715, ∼450, and ∼740 nm. The
confusion matrix and the ROC curve for the best performing
model (RF-K aiser -B3) on five selected wavelengths are
depicted in Fig. 14. We can see that the confusion matrix and
the ROC curve are somewhat similar to those in Fig. 8. There
is a larger error of omission for the class1 compared to class0

(0.12 versus 0.057) along with an overall robust AUC = 0.97.
3) 2019-2020 Data Results: Table X shows the 2019-2020

dataset F1 score results for one to ten selected bands. Similar
to results reported for the 2020 dataset, above three to six

Fig. 13. LRS 2020 dataset Pareto frontier for one to ten selected bands on
R F-K aiser-B3. Note the drop in accuracy beyond five selected bands.

wavelengths, the performance plateaued. The most accurate
test (RF-K aiser -B3) exhibited an F1 = 0.77 with only four
selected bands. Fig. 15 depicts the Pareto frontier curve of the
best performing model (RF-K aiser -B3). It is observable that
three and four wavelengths are points at which the curve starts
to plateau, with selected wavelengths at ∼700, ∼760, ∼660,
∼700, ∼760, ∼660, and ∼640 nm, with F1 = 0.75 and 0.77,
respectively. Moreover, the overall accuracy measures using
the LRS method were somewhat lower than those found via
SA [0.77 versus 0.79; see Fig. 9(b)]. The confusion matrix
is diagonal, and the ROC curve shows an AUC = 0.84 (see
Fig. 16).
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TABLE IX

LRS 2020 DATASET F1 SCORES FOR ONE TO TEN SELECTED FEATURES. NOTICE THE
VARIABLE (LIMITED) PERFORMANCE IN BANDS ABOVE THREE TO SIX

TABLE X

LRS 2019-2020 DATASET F1 SCORES FOR ONE TO TEN IDENTIFIED FEATURES FOR ALL TESTS. NOTE THE VARIABLE (LIMITED)
INFLUENCE ON THE ACCURACY METRIC BY APPENDING FEATURES ABOVE THREE TO SIX BANDS

D. Comparison With VIs

The findings of this research, for the most accurate test
(RF-K aiser -B3) via SA for five identified wavelengths, for
all three datasets (2019, 2020, and 2019-2020) were compared
with eight commonly used VIs (as referenced in Table III)
and tabulated in Table XI. As can be seen, our suggested
methodology outperformed all VIs for all three datasets, which
further proves the importance and contribution of a robust
framework.

IV. DISCUSSION

The major findings of this study included identification of
wavelengths corresponding to accurate snap bean pod maturity

assessment, detecting various sieve size classes (bins), and
their accuracy performance. These results are useful for opera-
tional, multispectral sensor design, specifying ideal sieve sizes
that can be discriminated, and the expected accuracies of
resultant classifications, respectively.

The variability in accuracy measures (F1 score) for the three
datasets requires more scrutiny. As we saw in Section III, the
2020 dataset delivered the most accurate F1 = 0.91 compared
to 2019 (F1 = 0.85) and 2019-2020 (F1 = 0.79). We contend
this inconsistency could be attributed to three factors. First, the
2019 dataset took advantage of a three-point ELM approach,
while the 2020 dataset utilized a four-point ELM approach.
This difference in the calibration-to-reflectance approach may
have influenced the distinction between classes, i.e., the
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TABLE XI

COMPARISON OF THE RESULTS, IN TERMS OF ACCURACY METRIC (F1 SCORE), FROM THE INTRODUCED FRAMEWORK, FOR THE MOST
ACCURATE TEST (R F -K aiser -B3) VIA SA FOR FIVE IDENTIFIED WAVELENGTHS, WITH EIGHT COMMONLY USED VIS

Fig. 14. LRS 2020 dataset confusion matrix for five selected bands on
R F-K aiser-B3.

Fig. 15. LRS 2019-2020 dataset Pareto frontier for one to ten selected bands
on R F-K aiser-B3. Note the slight, inconsistent improvement in accuracy
above four selected bands.

four-point ELM approached positively impacting the perfor-
mance. Second, the 2020 dataset contained sieve sizes 1–5,
while the 2019 dataset was comprised of sieve sizes 1–6. This
dissimilarity between sieve size bins, in the 2020 data and
the 2019 dataset, especially in the B3 sieve size bin, could
have led to a reduction in the complexity of the classification

TABLE XII

IDENTIFIED WAVELENGTHS ACROSS THE MOST ACCURATE TEST

(K aiser -B3) FOR READY-TO-HARVEST VERSUS NOT
READY-TO-HARVEST CLASSIFICATION

problem and have increased the performance. Finally, the
2020 dataset identified a wavelength in the ∼450 nm spectral
region as distinguishing, for multiple instances of the ACO,
SA, and LRS methods (see Fig. 13), while the 2019 dataset did
not detect this wavelength for ACO and SA, and only identified
in this region for LRS in some instances (see Fig. 11).
We believe that this wavelength could play a major role in pod
maturity assessment since it recurred multiple times in tests.
Also, we suspect that the drop in accuracy for the combined
2019-2020 dataset could be due to either the discrepancy
in the ELM approach between 2019 and 2020 datasets or
the simple fact that the model is generalizing. Future work
should include an evaluation of the effect of the number of
calibration panels in the ELM approach in order to increase
the certainty around such factors. The identified wavelengths
and their corresponding physiological links will be discussed
next.

Tabulated in Table XII are recurring wavelengths from the
SA and the LRS model, for the K aiser -B3 combination (the
most accurate results). It is evident that repetitive wavelengths
are present across all datasets, including ∼450, ∼530, ∼660,
700–720, ∼740, and ∼760 nm. An increased importance, thus,
has been attributed to the red-edge region and its influence on
the performance (see Figs. 11, 13, and 15). The identified
regions were located in the blue, green, and red reflective
regions, along with three bands in the red-edge region, with
physiological links to chlorophyll density and plant health and
vigor [12], [64]. Two of the major findings of this study,
thus, are that the selected bands in the red-edge region were
uncorrelated, while their addition to the band subset improved
the overall test accuracy, i.e., an accurate model that was not
overfitting (see Figs. 11, 13, and 15). In addition, we showed
in-depth results for the best-performing sieve size bin
(B3; [1, 2, 3, 4][5, 6]). This sieve size bin in effect creates
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Fig. 16. LRS 2019-2020 dataset confusion matrix for four selected bands
on R F-K aiser-B3.

a ready-to-harvest versus not ready-to-harvest separation
between the sieve sizes 1–4 and 5–6. The separation between
the mentioned sieve sizes arguably is best suited for pod matu-
rity assessment of large-sieve cultivars (Venture and Hunt-
ington). In other words, we demonstrated that pod maturity
assessment of large-sieve cultivars is feasible, while cultivars
with smaller sieve-size pods are harder to discriminate between
(possibly due to a lack of spectral features between smaller
sized pods; i.e., sieve sizes 1–4), when it comes to classifi-
cation between ready-to-harvest and not ready-to-harvest snap
bean [see Fig. 6(b)]. Finally, we compared the results of our
approach for the best performing test (RF-K aiser -B3) on
SA with eight commonly used VIs, for which our results
outperformed all.

Finally, the identified wavelengths or spectral regions
(i.e., ∼450, ∼530, ∼660, 700–720, ∼740, and ∼760 nm) are
similar to those detected in our previous study, for snap bean
yield assessment via UAS [24] with identified wavelengths
in ∼450, ∼500, ∼520, ∼650, ∼710, and ∼760 nm domains,
as well as growth stage classification of snap bean in a green-
house environment, with wavelengths in ∼500, ∼550, ∼660,
and 720-740 nm regions [22]. We regard this as a significant
result since in theory that one can evaluate both yield and pod
maturity with a single, well-designed multispectral sensor that
houses the identified wavelengths. The identified narrowband
regions, recurring in all datasets, could be used to transfer
the concepts learned into a more operational, affordable,
and tunable multispectral system. One example of such a
system is Tetracam’s Micro-MCA (Chatsworth, CA, USA)
with six tunable bands in the VNIR region. We contend that
the next phase of application-specific, UAS-based precision
agriculture will require such operational, tunable multispectral
systems to improve algorithm performance on an application-
by-application basis, as opposed to relying on hard-coded
wavelengths on mass-produced imagers.

V. CONCLUSION

Accurate and timely pod maturity assessment of crops could
contribute to a reduction in food waste while optimizing crop
quality and quantity. We conducted a comprehensive pod
maturity assessment of snap bean, as a proxy crop, across two
years’ worth of data, for two geographical locations, and six
different cultivars via hyperspectral data captured using a UAS.
To the best of our knowledge, this study is the first of its sort in

terms of crop and sensing modality. The specific objectives of
this research were to: 1) detect distinguishing spectral features
using feature selection methods, explaining the separation
between sieve size classes and 2) assess the viability of
utilizing machine learning algorithms for classification of pod
maturity sizes, for the snap bean as a proxy crop. The UAS
hyperspectral data were collected over the summer of 2019 and
2020 in the VNIR domain (VNIR; 400–1000 nm), comprising
272 contiguous spectral bands. Ground-truth data, explaining
snap bean pod maturity, were collected for six sieve size
classes (S1–S6). We approached this study by first calibrating
the collected raw spectra to reflectance using ELM, plot and
vegetation extraction, noise reduction, categorization of data
into sieve size bins, and data analysis. The noise reduction
stage was a two-step process, starting with removing bands
at the two ends of the collected spectra due to a lower
SNR compared to regions at the center of the detector’s
response (higher sensor sensitivity) and then implementing
a previously published approach, which exploited PCA and
dual-tree complex wavelet transform for reducing noise. The
captured ground-truth data in sieve sizes were used to create
four classification bins, namely, B1 for evaluating separation
between each sieve size; B2 for assessing separation between
S1 − S3 and S4 − S6; B3 for evaluating classification perfor-
mance between S1 − S2, S3 − S4, and S5 − S6; and B4 for
investigating separation performance between S1 − S4 and
S5 − S6. We balanced the data (in terms of classes in each
bin) and divided it into 70% training and 30% test set, in a
stratified fashion, prior to setting up classification bins for data
analysis. The data analysis stage included using our previously
published feature selection library, “Jostar” [24], and utilized
ACO and SA to detect the top five discriminating features,
and Plus-L Minus-R (LRS) for identifying one to ten features.
This study took advantage of RFs and DT as classifiers.

The findings of this study revealed that growth stage pod
maturity assessment of snap bean can be performed accurately
(F1 = 0.79–0.91) for large-sieve cultivars (e.g., Huntington
and Venture) when classifying between ready-to-harvest versus
not ready-to-harvest since there are distinct spectral features
separating these two pod maturity categories. In other words,
pod maturity classification for four-sieve and whole bean
cultivars is not possible via imaging spectroscopy since there
are not sufficient spectral features that could separate pods
with smaller sieve sizes. SA outperformed ACO, RF showed
superior performance compared to DT, and higher accuracies
were observed for the Kaiser method when it came to retaining
the top-K PCs. Results from the LRS optimization method
showed that three to six spectral features were sufficient for
robust classification performance.

Another major finding of this study was the identified
wavelengths for pod maturity classification. Detected wave-
lengths across optimization models showed that recurring
wavelengths resided in ∼450, ∼530, ∼660, 700–720, ∼740,
and ∼760 nm spectral regions. These wavelengths were similar
to those identified in our previously published study for yield
assessment of snap bean crop via UAV (see [24]; detected
wavelengths in this study were ∼450, ∼500, ∼520, ∼650,
∼710, and ∼760 nm), as well as our initial published study for
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growth pod maturity assessment in a greenhouse environment
(see [22]; ∼500, ∼550, ∼660, and 720–740 nm). This key
finding implies that one could target both yield and pod
maturity assessment of snap bean with a single multispectral
sensor, given that it contains the selected spectral bands, while
also confirming that the scaling of the conveyed notions from
a greenhouse environment [22] to an airborne modality is
practical. However, future work research is required to test
these outcomes against other scenarios, e.g., climate variabil-
ity, and to transfer the learned concepts into the operational
multispectral realm, especially in terms of evaluating the
impact of image calibration approaches.

Specifically, although this study spanned two geographical
locations, two years of data, and six cultivars of snap beans,
there are some limitations that need to be addressed. First,
the hyperspectral imager contains inherent noise, which was
not quantified. This mandates further research into evaluating
noise (e.g., using an integrating sphere) and creating a baseline
to compare the noise-reduced data against. Second, both geo-
graphical locations were situated in upstate New York. Future
efforts should include incorporating data from geographical
locations with different climates.

This study does, however, bode well for the extension of
such results into the operational domain. Imaging spectrome-
ters typically are costly to acquire and operate, thus limiting
them to research environments. Our results show that one can
distill a large number of wavelengths into a subset that can
be designed into a multispectral, affordable, and operational
UAS-based imaging system. Such a system now can be used
in the context of a specific precision agriculture application,
in this case, that of identifying the optimal harvest schedule
for the snap bean.
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