
remote sensing  

Article

Broadacre Crop Yield Estimation Using Imaging Spectroscopy
from Unmanned Aerial Systems (UAS): A Field-Based Case
Study with Snap Bean

Amirhossein Hassanzadeh 1,* , Fei Zhang 1 , Jan van Aardt 1 , Sean P. Murphy 2 and Sarah J. Pethybridge 2

����������
�������

Citation: Hassanzadeh, A.; Zhang, F.;

van Aardt, J.; Murphy, S.P.;

Pethybridge, S.J. Broadacre Crop

Yield Estimation Using Imaging

Spectroscopy from Unmanned Aerial

Systems (UAS): A Field-Based Case

Study with Snap Bean. Remote Sens.

2021, 13, 3241. https://doi.org/

10.3390/rs13163241

Academic Editor: Brigitte Leblon

Received: 7 July 2021

Accepted: 11 August 2021

Published: 15 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, Rochester, NY 14623, USA;
fz4070@rit.edu (F.Z.); jvacis@rit.edu (J.v.A.)

2 Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech at
The New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456, USA;
sm2244@cornell.edu (S.P.M.); sjp277@cornell.edu (S.J.P.)

* Correspondence: ah7557@rit.edu

Abstract: Accurate, precise, and timely estimation of crop yield is key to a grower’s ability to
proactively manage crop growth and predict harvest logistics. Such yield predictions typically are
based on multi-parametric models and in-situ sampling. Here we investigate the extension of a
greenhouse study, to low-altitude unmanned aerial systems (UAS). Our principal objective was
to investigate snap bean crop (Phaseolus vulgaris) yield using imaging spectroscopy (hyperspectral
imaging) in the visible to near-infrared (VNIR; 400–1000 nm) region via UAS. We aimed to solve the
problem of crop yield modelling by identifying spectral features explaining yield and evaluating the
best time period for accurate yield prediction, early in time. We introduced a Python library, named
Jostar, for spectral feature selection. Embedded in Jostar, we proposed a new ranking method for
selected features that reaches an agreement between multiple optimization models. Moreover, we
implemented a well-known denoising algorithm for the spectral data used in this study. This study
benefited from two years of remotely sensed data, captured at multiple instances over the summers
of 2019 and 2020, with 24 plots and 18 plots, respectively. Two harvest stage models, early and late
harvest, were assessed at two different locations in upstate New York, USA. Six varieties of snap bean
were quantified using two components of yield, pod weight and seed length. We used two different
vegetation detection algorithms. the Red-Edge Normalized Difference Vegetation Index (RENDVI)
and Spectral Angle Mapper (SAM), to subset the fields into vegetation vs. non-vegetation pixels.
Partial least squares regression (PLSR) was used as the regression model. Among nine different
optimization models embedded in Jostar, we selected the Genetic Algorithm (GA), Ant Colony
Optimization (ACO), Simulated Annealing (SA), and Particle Swarm Optimization (PSO) and their
resulting joint ranking. The findings show that pod weight can be explained with a high coefficient of
determination (R2 = 0.78–0.93) and low root-mean-square error (RMSE = 940–1369 kg/ha) for two
years of data. Seed length yield assessment resulted in higher accuracies (R2 = 0.83–0.98) and lower
errors (RMSE = 4.245–6.018 mm). Among optimization models used, ACO and SA outperformed
others and the SAM vegetation detection approach showed improved results when compared to the
RENDVI approach when dense canopies were being examined. Wavelengths at 450, 500, 520, 650,
700, and 760 nm, were identified in almost all data sets and harvest stage models used. The period
between 44–55 days after planting (DAP) the optimal time period for yield assessment. Future work
should involve transferring the learned concepts to a multispectral system, for eventual operational
use; further attention should also be paid to seed length as a ground truth data collection technique,
since this yield indicator is far more rapid and straightforward.

Keywords: feature selection; hyperspectral imaging; machine learning; snap bean; unmanned aerial
vehicle; yield modelling
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1. Introduction

Agriculture and related industries contributed more than $1 trillion to the United
States’ gross domestic product (GDP) in 2019 [1]. However, the agricultural industry is a
sector vulnerable to climate change, market factors, and within-season weather variability.
Inventory management in this sector, generally referred to as yield evaluation, is different
from other sectors, since crops require time for growth, and estimating “how much” and
“how many” are dependent on the physiology of living organisms. Nowadays, growers rely
on “expert guesses”, via multi-parameter models or in-situ assessments, which often provide
unreliable estimates. These inaccuracies could heavily impact not only the well-being
of a business, but on a larger scale, the economy of a region or a country. Growers also
need to accurately set the price of the crop with buyers prior to harvest, gauged based
on the predicted yield estimate. If the actual final yield is more than the estimated yield,
there is a chance the farmer would have to sell the remainder for a discounted price to
compensate for the unplanned surplus. Conversely, if the actual final yield is less than
the estimated yield, the business’s net profit is damaged because the unexpected shortage
of yield means they cannot sell as much as they projected. In both scenarios, buyers and
customers could become reluctant to continue doing business with the growers because
they are not receiving what they were promised. Accurate knowledge of the final yield
thus is important to both growers and the market to manage price.

Precision agriculture (PA) could provide an answer to this need by maximizing profit
and minimizing expenses and resources use. PA presents a systematic optimization tech-
nique and, when tied to remote sensing (RS), can provide non-destructive, rapid, and
affordable information about the target being studied [2,3]. RS modalities include in-situ,
airborne, or spaceborne systems, accommodating various sensors from RGB (color), multi-
spectral, hyperspectral, and light detection and ranging (LiDAR), each suited to a specific
application and objective [4]. These systems can be used for various crop assessments,
such as nutrient levels [5,6], water stress [7], weed detection [8], soil properties [9], crop
growth [10], and crop biomass or yield [9,11–15]. However, to assess such crop characteris-
tics from a remote platform, researchers often rely on hyperspectral sensing systems.

Hyperspectral systems are at the forefront of PA, given their ability to collect hundreds
of contiguous narrow spectral bands over a specified range in the electromagnetic spec-
trum [16,17]. This enables a targeted approach to develop more operational, cost-effective
multispectral solutions, distilled from the hyperspectral research. One feature of crop pro-
duction is that spectral signatures of the canopy change as crops mature [4]. This variation
could be valuable information to monitor as it enables an assessment of molecular absorption
features, foliar chemical characteristics, and particle scattering of the crop [18–20]. This change
is noticeable in terms of amplitude, absorption features, and change in the slope, of the
spectrum [4]. One caveat to the use of such systems, however, involves the need to address
potential noise contained in narrow bandwidth, large spectral range systems [21].

The quality of the data collected by hyperspectral sensor is degraded by atmospheric
effects, such as solar illumination and aerosol scattering, as well as instrument-based noise,
such as photon noise, quantization noise, etc. [20,22,23]. Moreover, when a noisy signal
is fed to a machine learning or a statistical model, it could be interpreted as valuable
information, due to the inherent high variance. Hyperspectral noise reduction has been
studied extensively in the literature and different methods have been proposed for signal
noise reduction, such as state-of-the-art deep learning methods, e.g., auto-encoders [24–26],
as well as Fourier transforms, derivatives, polynomial fitting methods [27–29], and wavelet
transforms [30,31]. Among the mentioned approaches, the study of Chen et al. (2010) has
attracted much attention in the past decade, where the variability in data is taken into
account using principal component analysis (PCA), followed by noise reduction via wavelet
shrinkage [32]. To add more detail, the original spectral domain is converted to principal
component (PC) space and a specific number of PC’s are selected as being important to
retain, while the remaining components are denoised using discrete wavelet shrinkage.
The denoised PC’s are fused back with the original retained PC’s, and finally converted
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back to the original spectral domain. Compared to other methods, this approach is far
more intuitive since the valuable information is detected based on the explained variability
(i.e., eigenvalues) and then the noise is mitigated for PC’s with smaller explained variability.
However, the introduced approach performs well under the assumption that the proper
number of PC’s are retained, since important information could become lost if incorrect
PC’s are selected. Zwick et al. (1986) compared five different methods for determining the
number of components to retain for PCA [33]. These rules were Barlett’s test (BART; [34]),
Eigenvalues greater than 1 (K1; [35]), minimum average partial (MAP; [36]), the SCREE
test [37], and parallel analysis [38]. The authors reported consistent high performance for
all data sets employing the MAP rule, which is based on a matrix of partial correlations
and the calculated squared partial correlation. Generating a spectral signal with reduced
noise is a first crucial step in hyperspectral analysis; however, hyperspectral data comes
with redundant amount of information that also needs to be addressed [39,40].

Hyperspectral data are known as rich, high-dimensional data that require specific
approaches to analysis. There are two main aspects that one needs to consider when using
hyperspectral data. First, a large number of bands typically are highly correlated, with the
extent to which one variable is correlated with another being quantifiable via Pearson’s
correlation coefficient [41]. Feeding highly correlated variables to machine learning algo-
rithms can cause overfitting [42]. Second, even after selecting uncorrelated bands, there
remains a small number of bands that actually contribute to the objective function being
studied. The process of selecting discriminating features is called feature selection, which
is a pivotal step in multivariate analyses. Feature selection approaches fall under the three
main categories of filter, wrapper, and embedded [43]. Filter methods determine feature
importance (i.e., scoring) based on the independent variables and response variables in the
data set (independent of the objective function), with examples such as Pearson’s corre-
lation coefficient, mutual information, etc. [44–46]. Filter methods have the drawback of
not taking into account the influence of the combination of features (as a subset) on model
performance. In contrast, wrapper algorithms are of an inductive nature and wrap around
the objective function (dependent on the objective function), while taking into account the
effect of features on each other as a subset. However, these methods are computationally
more expensive, due to their iterative nature. Examples of this category include genetic
algorithm (GA; [47]), ant colony optimization (ACO; [48]), particle swarm optimization
(PSO; [49]), and sequential search [50]. Embedded methods include algorithms that iden-
tify a subset of features in the process of training, but with a lower computational cost
than wrapper methods [46]. Examples in this category are regularization techniques [51].
Overall, hyperspectral imagery, from data acquisition and preprocessing, to band selection,
requires attention in terms of processing and modelling steps, but past prediction successes
have highlighted this modality’s usefulness.

There have been numerous recent published studies focusing on yield estimation using
UAS-based hyperspectral sensing, here we mainly focus on machine learning approaches.
Li et al. (2020) used RGB and hyperspectral sensing (400–1000 nm) as a basis for yield
modelling of potatoes. Their results show that fresh and dry biomass could be estimated
with a high coefficient of determination (R2 = 0.9) using random forests (RF) regression and
RReliefF feature selection [14]. Tao et al. (2020) studied wheat yield estimation in China
using hyperspectral imagery at three different stages of growth. Their approach included
extracting spectral indices from the hyperspectral data, and they reported acceptable
R2 values of 0.72 and a root-mean-square error (RMSE) of 648 kg/ha using partial least
squares regression (PLSR) at the flowering stage [52]. Feng et al. (2020) adopted an en-
semble approach to model yield for alfalfa in Wisconsin, USA. Their approach included
generating vegetation indices (VIs) and feeding these into RF, support vector regression
(SVR), and K-nearest neighbors (KNN) models, while using the recursive feature elimi-
nation (RFE) feature selection method[15]. Their final models show an R2 of 0.87 and an
RMSE of 220 kg/ha using the ensemble approach. However, among various crops studied
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in the literature for yield assessment, one crop lacks fundamental research regarding yield
assessment, namely beans and specifically, snap bean.

Snap bean (Phaseolus vulgaris) is one of the largest sources of agricultural income,
with a combined value of over $400 million in 2016 for the USA [53]. Yuan et al. (2017)
studied snap bean yield and growth as a function of nitrogen content. Their findings
showed a high coefficient of determination (R2 = 0.90) and a low error (RMSE = 7.6%) [54].
Saleh et al. (2018) studied the effect of irrigation on yield and growth of snap bean crop
for two different cultivars and identified 80% ET as optimal irrigation application [55].
Our previously published greenhouse study, using a handheld spectroradiometer in the
VIS-SWIR (400–2500 nm), intended to model yield of snap bean crop (cv. Huntington), in a
best-case scenario environment, at two harvest times (early and late). We showed that snap
bean yield could be predicted, early in the growing season, most accurately 25–32 days
prior to harvest with RMSE values as low as 3 g/plant and R2 values as high as 0.72.
To the best of our knowledge, no studies have been conducted to evaluate the relationships
between hyperspectral reflectance and yield components in snap bean in field conditions.

We hypothesize that yield modelling assessment of snap bean can be conducted using
airborne hyperspectral systems, since plant yield has been shown to be a function of spectral
responses, where spectral response reflects biophysical and physiological characteristics.
Thus, the objectives of this study were to:

1. Asses yield prediction of snap bean, at various points during the growing season,
using hyperspectral imagery and descriptive models;

2. Identify discriminating spectral features explaining yield; and
3. Evaluate the most accurate time (growth period) for yield prediction, prior to harvest.

2. Methods
2.1. Study Area

The study took place at two different geographical locations during summer 2019 at
Geneva, NY (42º49′53.0′′N, 77º00′48.2′′W) and summer 2020 at Seneca, NY (42º51′59.2′′N,
77º01′45.8′′W). Individual plots were identified (24 and 18 in 2019 and 2020, respectively;
Figure 1). Six different cultivars of snap bean were chosen for a holistic evaluation across
different snap bean varieties: Venture (large bean cultivar; L1), Huntington (large bean cul-
tivar 2; L2), Colter (four sieve cultivar 1; F1), Cabot (four sieve cultivar 2; F2), Flavor-sweet
(whole bean cultivar 1; W1), and Denver (whole bean cultivar 2; W2). These six cultivars
were replicated four times and three times, for 2019 and 2020 data, respectively (Figure 2).

(a)

Figure 1. Cont.
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(b)

Figure 1. RGB representation of the data and the designated plots for (a) 2019 and (b) 2020 experimental designs. Note the
plots’ bounds in blue.

(a)

Figure 2. Cont.
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(b)

Figure 2. Outlined plots and matching cultivars along with field and plot design dimensions for (a) 2019 and (b) 2020
experimental designs. Listed here are the Venture (large cultivar variety 1; L1), Huntington (large cultivar variety 2; L2),
Colter (four sieve cultivar 1; F1), Cabot (four sieve cultivar 2; F2), Flavor-sweet (whole bean cultivar 1; W1), and Denver
(whole bean cultivar 2; W2). Schematics are not to scale.

2.2. Assessment of Plant Growth Characteristics

Each data set was considered an individual model and each plot was considered one
experimental unit. Ground truth yield components (pod weight and seed length) were
measured in 3-m sub-sampled areas within plots. Pod weight was weighed with the use of a
balance (Model “ES6R”, OHAUS Corp., Parsippany, NJ, USA) with 0.002 kg precision. Seed
length was measured using a maturity gauge (Seminis, Missouri, USA; Figure 3). The same
gauge was used to classify pods into different sieve sizes for determining harvest timing
(scheduling). Sieve size one through six were designated S1–S6, with sizes as follows:
S1 < 5.8 mm; 5.8 mm < S2 < 7.5 mm; 7.5 mm < S3 < 8.5 mm; 8.5 mm < S4 < 9.7 mm;
9.7 mm < S5 < 10.9 mm; S6 > 10.9 mm. After pods were classified into sieve sizes,
10 seeds from 10 different pods from the largest sieve size were extracted and placed
alongside each other on the indented part of the seed length gauge, where the measured
length was recorded and reported as seed length. To assess the influence of harvest timing,
two different harvest stages (early vs. late) were assessed. The early harvest model was
determined when the majority of the Venture cultivar (L1) had reached S6, Huntington
(L2) had reached S5, Colter (F1) had reached S4, Cabot (F2) had reached S4, Flavor-sweet
(W1) had reached S2, and Denver (W2) had reached its maximum length, which is S1. Late
harvest occurred two days after the early harvest for both 2019 and 2020 data sets.

Each plot contained four rows for both the 2019 and 2020 data. Seeds were planted
using a Monosem precision planter (Monosem Inc., Edwardsville, KS, USA) at a density
of 20–26 plants/m, depending on the cultivar, at a depth of approximately 3.8 cm. Fer-
tilizer with an N:P:K ratio of 15:5:5 was only applied at planting at a rate of 335 kg/ha.
No irrigation was applied to the trial.
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Figure 3. Maturity gauge used for determining seed length and pods’ sieve sizes. On the upper part,
pod sieve size is determined by sliding pods across the cavities. On the bottom part, ten seeds are
put alongside each other and the total length is recorded.

2.3. Data Collection

Hyperspectral data were collected using an imaging spectrometer (“Nano Hyper-
spec” model, Headwall Photonics, Fitchburg, Massachusetts, USA) in the VNIR domain
(400–1000 nm), with 272 contiguous spectral bands. The hyperspectral sensor incorpo-
rates a sensor array of 640 pixels, and a full-width-half-maximum (FWHM) of 6 nm. The
Nano sensor was mounted on a customized DJI Matrice-600 quadcopter (MX-1; [56]).
Data were collected seven and eight times during the growth season, for 2019 and 2020
data, respectively (Table 1).

Table 1. Growth calendar of 2019 and 2020 experimental designs along with the captured ground sampling distance (GSD)
of a snap bean field in Geneva, New York, USA. Please note that the first date is the sowing date and no data were collected.

Model Date Stage Days after Planting (DAP) Heat Unit (◦) * GSD (cm)

2019 06/27/2019 Sowing 0 0 N/A
08/01/2019 Flowering 35 794 3
08/05/2019 Flowering 39 865 3
08/12/2019 Pod formation 46 997 1.5
08/14/2019 Pod formation 48 1040 3
08/16/2019 Pod formation 50 1074 3
08/20/2019 Pod formation (early harvest) 54 1158 3
08/22/2019 Pod formation (late harvest) 56 1205 3

2020 06/27/2020 Sowing 0 0 N/A
07/28/2020 Budding 31 760 3
07/31/2020 Flowering 34 822 3
08/06/2020 Flowering 40 945 3
08/10/2020 Pod formation 44 1022 3
08/14/2020 Pod formation 48 1116 3
08/21/2020 Pod formation 55 1239 3
08/24/2020 Pod formation (early harvest) 58 1306 3
08/26/2020 Pod formation (late harvest) 60 1346 3

* heat unit calculated with Tbase = 10 ◦C.

2.4. Data Preprocessing

The data preprocessing section was comprised of three primary steps, which are
calibration to reflectance, vegetation detection, and spectral denoising, as shown in the
flowchart in Figure 4.
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   2020 data   
4-point ELM

Figure 4. Flowchart of the steps employed for preprocessing raw hyperspectral data to evaluate snap bean yield components.

2.4.1. Calibration to Reflectance

Calibration to reflectance was executed using the three-point (white, gray, and
black panels) and four-point (white, light gray, dark gray, and black) empirical line
method (ELM) via ENVI software (V. 5.4) for 2019 and 2020 data, respectively. This
method has proven accurate for calibrating to reflectance [57]. The reference spectra
were collected using a portable spectroradiometer (“HR-1024i” model, Spectra Vista
Corporation, Poughkeepsie, NY, USA).
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2.4.2. Vegetation Detection

The vegetation detection step was approached via two different techniques: vegetation
index (VI) and spectral angle mapper (SAM). For the VI approach, the Red edge Normalized
Difference Vegetation Index (RENDVI) was calculated as below for each plot:

RENDVI =
b750 − b705

b750 + b705
(1)

where bq is the reflectance at wavelength q. Furthermore, the average of the RENDVI distri-
bution was computed as the initial threshold (thresh_initial), where thresh_initial
was fed to global thresholding algorithm [58] to compute the final threshold (thresh_final).
From the RENDVI image, values above and below the calculated thresh_final were cho-
sen as vegetation and background, respectively, and a mask was created. A median blur
filter of size 7× 7 was used to remove any unwanted noise from the generated mask.
Finally, the generated mask was applied to all plots.

For the SAM approach, an average spectrum of 1104 collected spectra of the Hunt-
ington cultivar, from the previously published yield modelling greenhouse study [4], was
used as the reference spectra [59]. Subsequently, the cosine similarity angle between each
pixel and the reference spectra was calculated as:

α = cos−1

( −→s .−→x∥∥−→s ∥∥.
∥∥−→x ∥∥

)
(2)

where s is the reference spectrum, x is the spectrum from the hyperspectral drone data, and
α is the cosine similarity angle (radians). A threshold of 0.3 radians for α was iteratively
selected to preserve the pixels closest to the reference spectrum. The generated mask from
this approach was applied to all plots, after which the extracted vegetation spectra were
fed to the spectral denoising step.

2.4.3. Spectral Denoising

The flowchart presented in Figure 4, shows that the spectral denoising stage begins
with removing spectral regions between 400–450 nm and 900–1000 nm, at the detector fall
off domains (i.e., two ends of the spectral collection domain), both of which exhibit a lower
signal-to-noise ratio (SNR) compared to other regions. SNR was calculated by dividing the
mean by the standard deviation of each spectrum. This step reduced the number of bands
from 272 to 202. Next, the proposed spectral denoising algorithm from Chen et al. (2010),
was implemented. First and foremost, the data from all the plots and cultivars for each day
were concatenated and passed to a PCA. This data fusion step allows us to capture a holistic
variability that might not be obtainable if approached by another method. Subsequently,
the MAP method, introduced in the introduction section, was used to obtain the first
k critical PC’s. The MAP method begins with partialling out the component loading matrix
Ak from the correlation matrix R, in order to obtain partial covariance matrix Cp, where
k is the number of components (from 1 to p; p = the number of variables) as below:

Cp = R− Ap AT
p (3)

the average square of the partial correlations is calculated as a measure for MAP criterion:

MAPk =
p

∑
i=1

p

∑
j=1
i 6=j

r2
ijk

p(p− 1)
(4)

where MAP is an array of length p. From this method, k, the number of components to
retain, is determined by finding the minimum MAP and its corresponding kth component,
i.e., k = argmin(MAP) [60]. Next, p− k components for each spectrum from each plot are
passed to a dual-tree complex wavelet transform, in an iterative fashion. The number of
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levels to perform wavelet decomposition was set at five. The thresholding formula, as
presented in Chen et al. (2010) is as below:

dj,k = dj,k max(0,

(
1− thr2

S2
j,k

)
) (5)

where dj is the high-pass wavelet coefficient i, with size k. S2
i,j = (

∣∣∣dj,k−1

∣∣∣2 + ∣∣∣dj,k

∣∣∣2 +∣∣∣dj,k+1

∣∣∣2)/3, and thr =
√

2σ2
n log n is the universal threshold. σ is the noise estimate

calculated as σ = MAD(
∣∣d1,k

∣∣)/0.6745, with MAD being the median absolute deviation,
and d0,k being the high-pass coefficient at the finest level. Next, the updated coefficients
are transformed back into the PCA space, concatenated with the retained PC’s, and then
transformed back to the spectral domain.

2.5. Data Analysis
2.5.1. Jostar: Feature Selection Library in Python

We developed Jostar, a feature selection library for Python for classification and
regression tasks (see Section 2.6) for this study. This library is comprised of: (i) five meta-
heuristic algorithms, namely ACO [48], GA [47], Differential Evolution (DE; [61]), and
Simulated Annealing (SA; [62]); (ii) three sequential algorithms which are Plus-L Minus-R
(LRS), Sequential Forward Search (SFS), and Sequential Backward Search (SBS) [63]; and
(iii) one multi-objective optimization algorithm that is Non-dominated Sorting Genetic
Algorithm-II (NSGAII; [64]). Among meta-heuristic algorithms, search spaces for GA,
DE, and NSGAII were initially defined from an arbitrary continuous domain of uniform
distribution, i.e., x ∼ U(0, 1). The continuous domain is then converted to discrete do-
main (permutated indices; suited for feature selection) using random keys defined as
y = [argsort( f )m]1≤m≤n f

with f as the coordinates in the defined search space, and y as
the random keys array of size n f . The rest of the meta-heuristic algorithms are defined in
the discrete domain, thus no further alteration was needed.

These algorithms ingest multiple parameters. The n f parameter defines how many fea-
tures need to be selected from the given feature space. However, algorithm-specific parameters
lack support from the literature and the vast majority of heuristics mandate hyperparameter
tuning prior to final employment. Jostar takes advantage of an easily operated function for
hyperparameter tuning (see Section 2.6). Moreover, as mentioned in the introduction section,
removing correlated variables is necessary, which can be performed in various ways in Jostar.
The user can sort features prior to decorrelating variables based on scores obtained from statisti-
cal tests, such as the F-test, mutual information, χ-squared, and Pearson’s correlation coefficient,
between dependent and independent variables. Furthermore, the user has access to numerous
scoring functions for minimization or maximization, such as coefficient of determination (R2),
adjusted coefficient of determination (R2

adj), root mean square error (RMSE), etc. for regression
tasks, and precision, recall, kappa, among others, for classification tasks.

To compare selected features from one optimization model with another, a robust
ranking method needs to be implemented. Such a method not only accounts for the
occurrence rate of important features during optimization, but also how much each of
those features contributed to overall performance. Thus, a ranking attribute defined, using
the proposed method, is available to all heuristic algorithms:{

tm = um(1 + [1− αm]wm); if regression task
tm = um(1 + αmwm); if classification task

(6)

where variables are: m is 1 to p with p being the number of features passed to the optimization
algorithm; tm is the calculated feature ranking; um is the proposed feature permutation
method [65] calculated for all features; and wm is the occurrence rate. The occurrence rate is
defined as wm = nm,occ/ntotal for feature m, for which nm,occ is the number of times feature m
appeared in the top 25% of the features subset pool and ntotal is the total number of feature
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subsets in the top 25% percentile of the features subset pool (e.g., of 1000 agents generated
during optimization, the top 25% percentile are extracted counting to 200 agents [ntotal = 200],
and the number of times feature m occurred in ntotal set is logged as nm,occ = 150; thus the
wm is calculated as wm = nm,occ/ntotal = 150/200 = 0.75); and αm is the average RMSE
score for regression tasks and mean F1-score for classification tasks, for feature m. This last
step takes into account the importance of number of times a feature appears in the search
domain, for feature subsets of low error or high accuracy (i.e., the top 25%). Moreover, the αm
parameter, multiplied by wm, takes into account the impact the feature m has when compared
to the perfect accuracy, i.e., RMSE = or F1-score = 1, therefore enabling a ranking comparison
from different optimization models for the same data set.

2.5.2. Feature Selection Procedure

The overall data analysis procedure is depicted as a flowchart in Figure 5. As can be
seen, the preprocessed hyperspectral data are initially fed to the feature selection step in
hyperparameter tuning (param. tuning) mode, with max_evals = 200 as the maximum
number of evaluations, to search the defined space and n_iter = 20 iterations for the opti-
mization model, at each evaluation. Subsequently, the test mode is run with the optimal
parameter identified from the param. tuning mode, with n_iter = 100. For both modes,
the following steps were conducted: (i) PLSR was selected as the regressor for this study’s
objective, given its capability for handling multicollinearity and its low computational
cost; (ii) GA, SA, PSO, and ACO, embedded in Jostar, were selected as four feature se-
lection optimization models; (iii) the defined number of selected features was set as five
(i.e., n f = 5) for all sets and cross-validation Leave-One-Out RMSE value was selected
as the scoring parameter and minimized for (weight = −1); (iv) the top 20 decorre-
lated features were retained, in order to ensure a consistent search space across all tests;
(v) all features were scaled to the 0–1 range; (vi) the optimization model was then “fit”
with the defined arguments and values. The test mode takes advantage of averaging
output rankings from the four optimization models. The last step allows for a more holistic
ranking, since there is a possibility of an optimization algorithm falling in a local minimum.
The defined search spaces for the hyperparameter tuning step are tabulated in Table 2.
More information on each parameter’s explanation can be found in Jostar’s documentation.

Table 2. Optimization models, corresponding parameters, and associated value ranges identified for hyperparameter tuning.

Optimization Model Parameter Description Sampling Method Low Bound High Bound

GA 1 Crossperc Crossover percentage Uniform logarithmic 10−2 0.5
Mutperc Mutation percentage Uniform logarithmic 10−2 0.2
Mutrate Mutation rate Uniform logarithmic 10−2 0.2

β Selection pressure Random integer 1 10
Npop Population size Random integer 20 200

SA 2 α Cooling factor Uniform logarithmic 0.8 0.99
T0 Initial temperature Uniform logarithmic 10−1 500

Niter−sub Number of sub-iterations Random Integer 20 200

PSO 3 α Information elicitation factor Uniform logarithmic 10−5 0.5
C1 Cognitive parameter Uniform logarithmic 10−2 2
C2 Social parameter Uniform logarithmic 10−2 2
W Inertia weight Uniform logarithmic 10−2 1.2

Wdamp Inertia weight damping factor Uniform logarithmic 10−2 0.5
Npop Number of particles Random integer 20 200

ACO 4 α Information elicitation factor Uniform logarithmic 10−5 0.5
ρ Pheromone evaporation coefficient Uniform logarithmic 10−5 0.5
τ0 Initial pheromone intensity Uniform logarithmic 10−5 1
Q Pheromone intensity Uniform logarithmic 10−5 1

Nant Number of ants Random integer 20 200
β Meta-heuristic factor Random integer 1 5

1 Genetic Algorithm; 2 Simulated Annealing; 3 Particle Swarm Optimization; 4 Ant Colony Optimization.
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Figure 5. Flowchart of the steps employed for data analysis of the preprocessed hyperspectral data.
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2.6. Software

Jostar was implemented and tested in Python 3.x [66] and is publicly available at
www.github.com/yxoos/jostar. The hyperparameter tuning function was implemented
with the help of Hyperopt [67], while the PLSR was sourced from Scikit-learn [68].

3. Results
3.1. Descriptive Statistics

Box plot representations of ground truth data for both pod weight and seed length
yield indicators are depicted in Figure 6. Pod weight had a larger range, average and
similar or larger variability in 2019 compared to 2020 (Figure 6a,b). Seed length range,
average and variability were higher for data collected in 2020 (Figure 6c,d).

Figure 7 depicts the SNR comparison between the raw data prior to denoising,
and the denoised data (PCA denoised + band removal), from a random flight from the
2020 data set. As can be seen, there was a significant increase in the reported average
SNR (21% increase) post denoising, especially in the visible region. Moreover, the plot
shows that SNR dropped in detector fall-off regions—400–450 nm and 900–1000 nm—
further justifying our approach to remove the bands from the two extreme ends of
collected spectra.

The impact plots (see [69]) of the first 10 PC’s are shown in Figure 8. PC-1 empha-
sized changes in the NIR region and the variability in terms of amplitude, while PC-2
highlighted variability in VIS and NIR, but more in terms of a slope, with the handle set
at red edge peak region (i.e., higher/lower shifts on one end and lower/higher shifts
on the other end). The first two PC’s accounted for 65% of total explained variability.
PC-3 and PC-4 were responsible for a total of 8% explained variability and mostly
reflected small variabilities in the visible region. PC-5 was responsible for only slight
changes in the VIS domain and accounted for 1.32% of the total variability. The higher
the PC index, the smaller the variability described. PC-6 to PC-8 reflected noise in the
VIS and the far end of the NIR region.

(a) (b)

Figure 6. Cont.

www.github.com/yxoos/jostar
www.github.com/yxoos/jostar
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(c) (d)

Figure 6. Ground truth yield values for pod weight and seed length for 2019 and 2020 data: (a) pod
weight 2019 data, (b) pod weight 2020 data, (c) seed length 2019 data, and (d) seed length 2020 data.

Figure 7. A comparison of signal-to-noise (SNR) across wavelengths before and after spectral
denoising. Note the increase in the average estimated SNR.
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Figure 8. The first 10 principal components of a random flight from the 2019 data set. Please note that the first few PC’s contribute to the largest amount explained variability.
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3.2. Pod Weight
3.2.1. 2019 Data Set

Among optimization models, ACO and SA outperformed others at both early
and late harvest stages (Figure 9). PSO became stuck at a local minimum for both
harvest stages. We observed a maximum R2 of 0.78, reported by the ACO-RENDVI
at 46 DAP for early harvest, and a maximum R2 of 0.85 at 48 DAP, reported by SA-
SAM, for late harvest. Moreover, it seemed that the RENDVI model had a larger
variability compared to SAM. The general trend of both curves for all models, however,
was of an ascending nature. We noted that for both vegetation models, there was
a drop in accuracy at 39 DAP, which corresponded to the final stages of flowering.
Figure 10 displays regression results for the ACO-RENDVI model at 46 DAP and
SA-SAM model at 48 DAP, for early and late harvest, respectively. The early harvest
2019 regression results exhibited an R2 as high as 0.78 for calibration and an R2 of 0.60
for cross-validation. The corresponding RMSE values were 1369 kg/ha (12.9%) and
1838 kg/ha (17.2%) for calibration and cross-validation, respectively. The late harvest
stage for the 2019 data set outperformed the early harvest stage with an R2 of 0.84
and 0.75, for calibration and cross-validation, respectively. The corresponding RMSE
values for the late harvest stage of the 2019 data set were 1257 kg/ha (10.7%) and
1588 kg/ha (13.8%). Residual plots from both harvest stages demonstrated a random
spread without a trend, validating the choice of the regression model.

We chose the SAM models at both harvest stages for further analysis toward
discriminating bands, due to the lower variability in terms of performance metrics
throughout the growth stage. Figure 11 shows the normalized average rankings across
all optimization models and the corresponding top five features to the right of each
ranking “belt” for the 2019 pod weight data. Figure 11a shows rankings for the early
harvest stage. Blue reflective pigment (450–500 nm) was present on all days, except at
50 DAP; the green reflective pigment (500–560 nm) was represented throughout; the
red reflective pigment (600–700 nm) manifested throughout, except at 39 and 46 DAP;
and the red edge peak (700–770 nm) was evident throughout, except at 48 and 54 DAP.
For this harvest stage, the wavelength at 451 nm was repeated three times, and 478,
505, 516, 525 nm were repeated twice in the early harvest stage analysis. Figure 11b
depicts normalized averaged rankings for late 2019 harvest stage. The identified bands
from these set of rankings were: blue reflective pigment (450–500 nm) was present at
all dates except 35 and 50 DAP, corresponding to late flowering and pod formation;
green reflective pigment (500–600 nm) was evident at all days; red reflective pigment
(600–700 nm) was apparent at all stages but 39 DAP, which corresponds to final stages
of flowering; the red edge peak (700–770 nm) was evident for all days, except at 46, 54
and 56 DAP; and NIR (819 nm) resided at 35 and 56 DAP, was represented, with the
timing corresponded with the on-set of flowering and final stages of pod formation.
At this harvest stage, the wavelength at 525 nm was repeated four times, 451 nm was
repeated three times, and 505, 541, 659, 759, and 819 nm were repeated twice.
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Figure 9. Results for coefficient of determination (R2) for snap bean 2019 pod weight data set, for (a) early and (b) late
harvest stage, as determined via two different vegetation approaches, SAM and RENDVI, as tested on PLSR.
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Figure 10. Regression results for snap bean 2019 data set on (a) the ACO-RENDVI model at 46 DAP for the early harvest stage and (b) the SA-SAM model at 48 DAP for the late
harvest stage.
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Figure 11. Snap bean pod weight 2019 data set average rankings at (a) the early harvest stage and (b) the late harvest stage, based
on the SAM vegetation model. The corresponding days after planting (DAP) and heat unit for the collected data are shown to the
left of each ranking belt, while the top five features, with the first one having the highest score, are listed to the right.

3.2.2. 2020 Data Set

Results for this data set are presented in Figure 12. The overall trend of plots is
ascending for both harvest stages, although, a drop in accuracy for the final stage of
flowering at 34 DAP was observable for both harvest stages. Moreover, it should be noted
that there was a second drop in accuracy at 55 DAP for early harvest, which was not
evident in the late harvest stage. ACO outperformed other optimization models, however,
at 40 DAP, ACO performed inferior to other optimization models. This corroborated
our reasoning for using the proposed ranking method, i.e., to account for variability in
performance between different optimization models due to becoming stuck in a local
minimum. SAM produced more accurate results, compared to the RENDVI model in most
cases, for both early and late harvest stages. For the early harvest stage, ACO-SAM at
44 DAP outperformed other models, and for the late harvest stage, ACO-SAM at 58 DAP
exhibited the most accurate results (Figure 13). Pod weight prediction at the early harvest
stage was quantified with an R2 of 0.82 and an RMSE value of 987 kg/ha (11%), for
the calibration data set, and an R2 of 0.59, with corresponding RMSE value 1492 kg/ha
(17.5%) for cross-validation models. There was an increase in the overall performance
for the late harvest stage (Figure 13b), with an R2 of 0.93 and an RMSE of 940 kg/ha
(14.1%) for calibration, and R2 of 0.84 with a matching RMSE of 1377 kg/ha (19.4%) for
cross-validation. The distribution of residuals was random (Figure 13b).

For the 2020 pod weight data, the SAM vegetation detection model was selected due
to more consistent results with less variability, when compared to the RENDVI vegetation
approach (Figure 14). The wavelengths at the early harvest stage were identified as: the
blue reflective pigment (450–480 nm) was present throughout; the green reflective pigment
(510–600 nm) presented throughout the experiment, except for 44 DAP; the red reflective
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pigment (600–700 nm) was evident for all days except, at the harvest date (58 DAP); and the
red edge peak was present throughout (700–760 nm). At this harvest stage, wavelengths at
451 and 759 nm were repeated five times each, 523 nm was repeated three times, and 518,
607, 647 nm were repeated twice at the early harvest stage. Highly ranked wavelengths
detected at the late harvest were: those related to the blue reflective pigment (450–490 nm)
throughout, except for 58 DAP; the green reflective pigment (500–560 nm), evident on all
days except for 44 DAP; the red reflective pigment (600–690 nm), observable throughout
except for 40 DAP (initial pod formation stage); and the red-edge peak (700–765 nm)
observable throughout except for 31, 55, and 60 DAP. For this harvest stage, bandwidths
at 451 and 759 nm were repeated four times, and 474, 500, 525, 654, and 707 nm were all
repeated twice at the late harvest stage.
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Figure 12. Coefficient of determination (R2) results for snap bean 2020 pod weight data set, for (a) early and (b) the late
harvest stage via PLSR model and two different vegetation approaches, SAM and RENDVI.
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Figure 13. Regression results for snap bean 2020 data set on (a) the ACO-SAM model at 44 DAP for early harvest stage and (b) the ACO-SAM model at 58 DAP for the late harvest stage.
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Figure 14. Snap bean pod weight the 2020 data set average rankings across all four optimization models for SAM model at
(a) the early harvest stage and (b) the late harvest stage. The corresponding days after planting (DAP) and heat unit for the
collected data are shown to the left of each ranking belt, while the top five features, with the first one having the highest
score, are listed to the right.

3.3. Seed Length
3.3.1. 2019 Data Set

The 2019 snap bean seed length model slightly outperformed the pod weight 2019
data set (Figure 15). Similar to pod weight, the 2019 seed length results also exhibited
a drop in accuracy at the initial stages of data collection, e.g., 39 DAP for early and
46 DAP for the late harvest stage. SAM outperformed the RENDVI approach by a small
margin and was more consistent than RENDVI. For both early and late harvest stages, we
observed a decrease in accuracy on harvest date; however, the general trend was ascending.
A comparison of optimization models showed that, holistically, ACO outperformed other
approaches. GA-RENDVI’s results at 50 DAP surpassed other model performance, for
the early harvest model (Figure 15a). Moreover, results from the late harvest stage (see
Figure 15b) showed that SA-RENDVI resulted in the highest accuracy at 56 DAP. We chose
to present regression results for the two mentioned models (i.e., GA-RENDVI at 50 DAP
and SA-RENDVI at 56 DAP, for early and late harvest stages, respectively) in Figure 16.
We conclude from this figure that the GA-RENDVI model performed accurately, with an
R2 of 0.83 and an RMSE of 6.018 mm (6.9%) for the calibration set, and an R2 of 0.72 and an
RMSE of 7.577 mm (8.7%) for the cross-validation set. The SA-RENDVI model for the late
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harvest stage exhibited a higher R2 of 0.84 and an RMSE of 9.404 mm (9.2%) for calibration
set, while the cross-validation yielded an R2 of 0.73 and a RMSE of 12.383 mm (12.2%).
The residual plots for both of these models again showed a random spread and did not
follow any trend.
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Figure 15. Results for the coefficient or determination (R2) for snap bean 2019 seed length data set, for (a) the early and
(b) the late harvest stage, via two different vegetation approaches, namely SAM and RENDVI, as tested via PLSR.

Next, we opted to show ranking results for early and late 2019 seed length data sets
for the SAM vegetation approach, which resulted in lower variability and more consistency
in terms of accuracy at both harvest stages (see Figure 17). We concluded the following
for the early harvest stage, in terms of harvest-specific wavelengths: the blue reflective
pigment (450 nm) was represented only at 39 and 48 DAP; the green reflective pigment
(510–585 nm) was present throughout, except at 50 and 54 DAP (last two days); the red
reflective pigment (620–700 nm) was apparent throughout; the red edge peak (700–765 nm)
was evident for all stages, except at 35 and 48 DAP; and the NIR region (810–860 nm) only
manifested at 50 and 54 DAP (the last two days). The wavelengths at 451, 585, 659, 710, and
716 nm were repeated twice for this harvest stage. Moreover, the bands identified for the
late harvest stage model included: the blue reflective pigment (450–460 nm) for all stages,
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except at 35 and 50 DAP; the green reflective pigment (510–585 nm) throughout, except
for the last two days (at 54 and 56 DAP); the red reflective pigment (620–700 nm) for all
except at 54 DAP; the red-edge peak (700–765 nm), except at 48 DAP; and the NIR region
(810 nm), but only at 54 DAP. Further scrutiny showed that the wavelengths at 451 and
721 nm were repeated three times, and those at 583, 585, 659, 716 nm were repeated twice
for the late harvest stage.

3.3.2. 2020 Data Set

Figure 18, in turn, shows results for the 2020 data set, which exhibited a dip at
44 DAP at both harvest stages. However, the overall trend was ascending for both
stages. The performance metrics throughout the growth period were higher than those
reported for the 2019 data set, from a holistic perspective, with observed R2 > 0.75.
ACO outperformed other optimization models, but the SA-SAM model yielded the
most accurate results on the day of harvest for the early harvest stage. Findings for the
SA-SAM model at the early harvest stage showed an R2 of 0.98 at 58 DAP. In contrast,
the ACO-SAM model outperformed other models and resulted in an R2 = 0.94 at 58
DAP for the late harvest stage. The small reduction in accuracy on the harvest date,
previously reported with the 2019 seed length data set, was also detected with the 2020
late harvest stage data set. Regression results for the SA-SAM at 58 DAP for the early
harvest stage and the ACO-SAM at 58 DAP for the late harvest stage are presented in
Figure 19. A solid performance for the early harvest stage (Figure 19a) was evident
with an R2 of 0.98 and an RMSE of 4.245 mm (4.6%) for the calibration set and an R2 of
0.95 and an RMSE of 6.560 mm (7.4%) for the cross-validation set. Findings for the late
harvest stage (see Figure 19b) performed similarly, with an R2 of 0.94 and an RMSE
of 6.335 mm (6.7%) for the calibration set and R2 of 0.86 with an RMSE of 9.463 mm
(10.3%) for the cross-validation set. There again was no trend present in residual plots
and there was a random spread observable at both harvest stages.

Figure 20 shows the ranking belts for the 2020 data set for both harvest stages.
Wavelengths identified at the early harvest stage were: the blue reflective pigment
(450–475 nm), observable throughout; the green reflective pigment (520–560 nm) re-
gion, visible on all dates except at 58 DAP (harvest date); the red reflective pig-
ment (600–700 nm) spectral region, observable throughout, except at 44, 55, and
58 DAP; the red edge peak (700–740 nm) region, apparent throughout, except at 31
and 48 DAP; and the NIR (803 nm) range, which was only observable at the harvest
date (58 DAP). It should be noted that 451 nm was repeated six times, and the 494 and
518 nm wavelengths were repeated twice in the analysis. The detected wavelengths
at the late harvest stage, however, were: the blue reflective pigment (450–500 nm)
region, apparent for all dates; the green reflective pigment (500–570 nm) range was
detected throughout, except at 58 DAP, where maximum accuracy was obtained (see
Figure 18); the red reflective pigment (600–700 nm) spectral region, but not at 55 and
58 DAP; the red edge peak (700–760 nm) feature, observable throughout, except at 31
and 34 DAP; and the NIR spectral feature at 803 nm, but only at 58 DAP and with the
lowest significance. At this harvest stage, 451 nm was repeated seven times, and 494,
518, 670, 699, and 759 nm were repeated twice.
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Figure 16. Regression results for snap bean 2019 seed length data set on (a) the GA-RENDVI model at 50 DAP for the early harvest stage and (b) the SA-RENVI model at 56 DAP for the
late harvest stage.
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Figure 17. Snap bean seed length 2019 average rankings across all four optimization models for SAM model at (a) the early
harvest stage and (b) the late harvest stage. The corresponding days after planting (DAP) and heat unit for the collected
data are shown to the left of each ranking belt, while the top five features, with the first one having the highest score, are
listed to the right.
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Figure 18. Coefficient or determination metric for snap bean 2020 seed length data set, for (a) early and (b) the late harvest
stage via two SAM and RENDVI, tested with PLSR.
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Figure 19. Regression results for snap bean 2020 seed length data set on (a) SA-SAM model at 58 DAP for the early harvest stage and (b) ACO-SAM model at 58 DAP for the late
harvest stage.
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Figure 20. The snap bean 2020 seed length average rankings across for SAM models at (a) the early and (b) the late harvest
stages. The corresponding days after planting (DAP) and heat unit for the collected data are shown to the left of each
ranking belt, while the top five features, with the first one having the highest score, are listed to the right.

4. Discussion

The variability assessment using PCA resulted in impact plots, as previously depicted
in Figure 8. PC-1 reflect changes in 500–600 nm (green) and 600–700 nm (red reflective
pigment) with both being coupled to chlorophyll absorption, as well as an observable
variability between 700–800 nm (the red edge peak), and the 800–1000 nm spectral region,
which represents protein, oil, water, and starch absorption [18]. Results from PC-2, mainly
responsible for shifts in amplitude in the 400–700 nm range, address chlorophyll absorp-
tion [18], and is consistent with our previously published work in terms of addressing the
slope of the vegetation reflectance curve (see [4]).

We noticed that, for the majority of the data sets and models tested, the temporal
variability in performance for RENDVI was higher than that of SAM, as well as RENDVI
outperforming SAM at earlier growth stages. Further analysis revealed that this difference
in performance is due to the fact that RENDVI struggles with differentiating between
soil, vegetation shadow, and vegetation in denser crop canopies. Figure 21 shows two
plots, each treated with both RENDVI and SAM vegetation detection approaches. The
difference between vegetation detection performance for two plots (Figure 21a,b, with
Figure 21b being denser than Figure 21a) is evident in that RENDVI performs accurately
when there is a distinction between rows of vegetation. As the vegetation grows larger
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and denser, RENDVI fails to maintain performance and is not able to discern between
vegetation, vegetation shadow, and soil, while SAM consistently does. This translated into
shadow/background pixels affecting a plot’s average spectrum and thus the final yield
estimates. The next consideration relates to the wavelengths required for accurate yield
modeling, which has bearing on extending our results to operational sensors with fewer
wavelengths (bands).

SAM SAM 

RENDVI RENDVI 

(a)

SAM SAM 

RENDVI RENDVI 

(b)

Figure 21. A comparison of the vegetation detection results for cases where (a) vegetation canopy and the background are
distinguishable and (b) canopy closure has commenced, i.e., a dense canopy is present.

Table 3 shows a comparison of data sets across harvest stages for pod weight and seed
length, specifically (i) the different wavelength regions (zones) and their corresponding
dates in DAP (e.g., Blue: E. 50 implies that the blue reflective region is available at all
dates, except at 50 DAP), (ii) the equivalent wavelengths detected and the number of times
they appeared in the analysis (e.g., 3x: 451 means that 451 nm appeared three times across
growth stages), and (iii) when a drop in accuracy (dip) occurred in terms of DAP. The final
row also lists similarities between data sets in terms of identified wavelengths. We can
see from this table that for pod weight data and 2019 early and late data sets, blue, green,
red, and red edge (RE) zones are similar in terms of when they appear during growth.
Moreover, the selected wavelengths are highly alike with mutual bands at 451, 505, and
525 nm. The green zone is the most similar and wavelengths at 451, ∼520, ∼650, and
∼760 nm are mutual for both early and late harvest stages in the 2020 pod weight data
set. It can be seen that 707 nm was repeated twice for the 2020 pod weight, late harvest
stage, something that did not recur for the 2019 data set. In terms of seed length and
starting with the 2019 data set, we observed more similarity across spectral regions, but
mostly for the red, red edge, and NIR regions. The recurrent wavelengths are highly alike,
with mutual wavelengths at 451, 585, ∼700, and ∼716 nm. Last but not least, the 2020
late harvest stage data set exhibited the highest similarity for all regions, as well as for
identified wavelengths. It can be seen that the highest number of recurrences were found
for 451 nm, and the rest of the wavelengths reside in 520, 670, 700, and 760 nm. It is
important to mention that since the identified wavelengths are decorrelated, it is justified
to group wavelengths in close proximity to each other. For example, 707 nm in the 2020
late harvest for pod weight likely would be highly correlated with 699 nm for the 2020 late
seed length data. Keeping this in mind, we could confidently say that prominent mutual
wavelengths across all data sets (across year and yield indicator type) are ∼450, ∼500,
∼520, ∼650, ∼710, ∼760 nm, with physiological ties to chlorophyll absorption and density,
as well as and plant vigor [18,70]. Moreover, the literature states that 450 nm is sensitive
to chlorophyll contents <0.04 mmol/m2, while also having ties to carotenoid content [71].
The identified wavelength at 705 nm best describes chlorophyll absorption and is highly
correlated with this chemical attribute [10,71]. The wavelength at ∼520 nm has been linked
to the xanthophyll pigment, which could describe the yellowing in large sieve cultivars,
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i.e., Venture (L1) and Huntington (L2), as they senesce [72]. If we compare yield indicators
with one another, we can see that NIR zones are only apparent for the 2019 late harvest
pod weight data set; however, representation from the NIR region can be found in all seed
length data sets. Although they did not recur at times, this spectral region could be a
predictor of seed length variability (see Figures 17 and 20). As a final note, the identified
wavelengths in this study are aligned with those detected in our initial greenhouse yield
assessment study (∼500, ∼550, ∼660, and 720–740 nm). This notion shows that detected
wavelengths from the greenhouse study to the current UAV study are scalable.

Table 3. Snap bean outperforming models and their corresponding prominent spectral regions with respect to DA (“Zones”)
identified distinguishing wavelengths, and the drop in accuracy (“Dip”) in terms of temporal variability.

Data Set Yield Indicator Across Yield Indicator
WL (nm) SimilarityPod Weight Seed Length

Zone (DAP) WL a (nm) Dip Zone (DAP) WL (nm) Dip

2019 early

Blue: E. b 50
Green: T. c

Red: E. 39, 46
RE: E. 48, 54
NIR: NA d

3x: 451
2x: 478, 505,
516, 525

at 39 DAP
None

Blue: E. 39, 48
Green: E. 50, 54
Red: T.
RE: E. 35, 48
NIR: O. e 50, 54

2x: 451, 585,
659, 710, 716

at 40 DAP
at 55 DAP 451

2019 late

Blue: E. 35, 50
Green: T.
Red: E. 39
RE: E. 46, 54, 56
NIR: O. 35, 56

4x: 525
3x: 451
2x: 505, 541,
659, 759, 819

None
at 56 DAP

Blue: E. 35, 50
Green: E. 54, 56
Red: E. 54
RE: O. 48
NIR: O. 54

3x: 451, 721
2x: 583, 585,
659, 716

at 46 DAP
at 56 DAP 451, 659

2020 early

Blue: T.
Green: E. 44
Red: E. 58
RE: T.
NIR: NA

5x: 451, 759
3x: 523
2x: 518, 607,
647

at 34 DAP
at 55 DAP

Blue: T.
Green: E. 58
Red: E. 44, 55, 58
RE: E. 31, 48
NIR: O. 58

6x: 451
2x: 494, 518

at 44 DAP
None 451, 518

2020 late

Blue: E. 58
Green: E. 44
Red: E. 40
RE: E. 31, 55, 60
NIR: NA

4x: 451, 756
2x: 474, 500,
525, 654, 707

at 34 DAP
at 60 DAP

Blue: T.
Green: E. 58
Red: E. 58, 60
RE: E. 31, 34
NIR: O. 58

7x: 451
2x: 494, 518,
670, 699, 759

at 44 DAP
at 60 DAP

451, ∼500, ∼520,
∼700, ∼760

Across years
WL (nm)
similarity

451, ∼500, ∼ 520,
∼650, ∼760

451, ∼520, ∼500,
∼585, ∼660, ∼720

∼451, ∼500, ∼520,
∼650, ∼700, ∼760

a WL: Wavelength; b E.: Except; c T.: Throughout ; d NA: Not Available ; e O.: Only.

As previously shown in Figures 9, 12, 15 and 18, and also depicted in Table 3, two time
periods show a drop in accuracy for almost all data sets, in terms of temporal performance.
The first occurs at the final stages of flowering and the on-set of pod formation, and the
second at the final stages of pod formation, with slightly lower performance, for both
yield indicators. It can be seen from Table 3 that for pod weight assessment, the initial
dip occurs around 34–39 DAP, and the second occurs from 55–60 DAP. In contrast, seed
length evaluation, showed that the period at 40–46 DAP accounted for an initial dip, while
56–60 DAP showed a similar drop in performance at the final growth stages. This arguably
is one of the remarkable findings of this study, i.e., the window of opportunity between
44 and 55 DAP ensures the highest performance in terms of yield prediction, with an
overall ascending trend in accuracy, for both pod weight and seed length yield indicators.
Zhao et al. (2007) also observed an increased performance (R = 0.56–0.89, for two years
of data) in early flowering stages of yield prediction for lint crop [73]. Moreover, Hassan
et al. studied wheat yield prediction and observed a decrease in accuracy metrics after
the flowering stage [74]. Nothing was found in the literature regarding the latter drop
in accuracy. However, since this slight drop in predictive accuracy is usually near or at
the day of harvest, it arguably has very little impact on growers, in terms of management
impacts. Growers prefer early-season yield assessment that could assist them with pro-
active managerial and logistical decisions.

Our findings showed that seed length has a stronger focus on the NIR spectral region
in terms of identified bands, when compared to pod weight results. While this might be
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true for some days, we believe that the incorporation of NIR bands does not necessarily
guarantee a higher performance for yield prediction, but rather implies that seed length
is more sensitive, as dependent variable, when compared to pod weight, in the case of
hyperspectral remotely sensed data. This is a valuable finding for future research, since
seed length ground truth data collection is more straightforward in comparison to pod
weight, which requires more complex tools and additional human resources. Seed length
measurement only requires sampling of ten random pods from the largest pod size, which
can be achieved at a lower expense. Finally, as far as the annual data sets are concerned, an
increase in performance was observed for the 2020 data set, compared to the 2019 data set,
for both pod weight and seed length yield indicators. This increase might be due to the
use of 4-point ELM reflectance calibration for the 2020 data set, compared to 3-point ELM
for the 2019 data set. This increase in calibration accuracy in the initial stages thus could
positively impact the performance of especially the vegetation detection algorithm, but
also the overall, average spectral signature of the plot.

5. Conclusions

To the best of our knowledge, this is the first comprehensive study of snap bean
yield prediction, early in time during the growth season, via two different yield indicators,
pod weight and seed length, with the use of remotely sensed, unmanned aerial system
(UAS) hyperspectral data. The objectives of the presented research were to (i) quantify
yield prediction of snap bean prior to harvest, with the use of descriptive models, via
hyperspectral data, (ii) identify distinguishing spectral features that best predict pod weight
and seed length prior to harvest, and (iii) identify the growth/time period that corresponds
to the highest predictive accuracies. We first implemented an established hyperspectral
noise removal approach to mitigate the impact of noise on the analysis-this approach
increased the signal-to-noise ratio (SNR) by 25%. We introduced and implemented a novel
feature selection library for Python “Jostar”. We opted to detect only five decorrelated
wavelengths, since this number of bands is best suited for transfer to a multispectral,
operational sensing system. The proposed ranking method in this work accounted for the
effect of rankings from multiple optimization models to garner a holistic understanding of
identified features.

Our results show that the pod weight yield indicator could be predicted with high ac-
curacies (R2 = 0.78–0.93) and low errors (RMSE = 940–1369 kg/ha). Nevertheless, findings
from the seed length yield indicator outperformed those of pod weight, with higher accuracies
(R2 = 0.83–0.98) and lower errors (RMSE = 4.245–6.018 mm). Growers rely on both seed length
and pod weight as yield indicators to forecast profit and factory feedstock. The performance
for seed length yield assessment, along with the simplicity of this type of ground truth data
collection, indicates that this is a promising candidate for future work, thus ensuring larger
sample sizes and faster and less labor-intensive field work.

Our wavelength assessment revealed that the most recurrent wavelengths, across
growth stages and yield indicators, were located in the spectral regions of 450, 500, 520, 650,
700, and 760 nm. We also observed a slight drop in predictive accuracy at the final stages
of flowering or at the on-set of pod formation, as well the final stages of pod formation.
Our analysis showed that the ideal time period to evaluate yield, via either pod weight or
seed length, is 44–55 DAP with an overall ascending trend during this period. Our findings
show that a rapid data collection approach, based on a multispectral system that is tuned
with the reported wavelengths and aimed to assess snap bean yield in the introduced time
period, could potentially be used as a more affordable alternative to the hyperspectral
system used in this study. However, the actual implementation of this approach calls for
further analysis and mandates future work.

One limitation to this study was the number of plots (sample size) evaluated for yield,
which were 18 and 24 for the 2019 and 2020 data sets, respectively. Future work should
include larger sample size, since the larger the sample size, the more generalized/robust the
model. Another limitation was that the two research sites are both situated in upstate New
York, where the weather from one year to another is not significantly variable. Future work
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should focus on incorporating fields from different geographical locations, and especially
those with varying weather conditions, as well as integrating extreme weather conditions,
such as drought and flood. Additionally, since this study was designed to focus on a single
year’s worth, while a more generalizable model should incorporate predictive abilities
across years and data sets. An additional limitation was the high computational cost
of the implemented denoising algorithm and running wrapper optimization models for
thousands of iterations, while optimizing via the cross-validation set. This resulted in our
analysis being limited to one regression model and two vegetation detection approaches.
Future work could focus on further integrating vegetation detection methods and various
regression models. A possible alternative to our computational approach could be to
manipulate the structure of Jostar in order for each agent and its corresponding fitness
function to run on a Graphics Processing Unit (GPU), therefore ensuring a significant
improvement in speed.

The outcomes of this study bode well for an extension of initial greenhouse results
(see [3]) to an airborne, UAS-based approach, without a significant deterioration in accura-
cies. In fact, the identified wavelengths arguably can be “programmed” into a multispectral,
more affordable, and operational sensing platform, while the specific growth stages can be
targeted for the most accurate yield predictions. Such a solution would represent a true
research-to-application technology transfer and potentially could provide an impetus for
the adoption of advanced precision agriculture approaches.
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Abbreviations
The following abbreviations are used in this manuscript:

ACO ant colony optimization
DAP days after planting
ELM empirical line method
FWHM full-width-half-maximum
GA genetic algorithm
GDP gross domestic product
GPU graphics processing unit
GSD ground sampling distance
KNN K-nearest neighbors
LiDAR light detection and ranging
LRS plus-L minus-R
MAP minimum average partial
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NIR near infrared
NSGAII non-dominated sorting genetic algorithm-II
PA precision agriculture
PC principal component (PC)
PCA principal component analysis
PLSR partial least squares regression
PSO particle Swarm Optimization
R2 coefficient or determination
RE red edge
RENDVI red-edge normalized difference vegetation index
RF random forests
RFE recursive feature elimination
RMSE root mean square error
RS remote sensing
SA simulated annealing
SAM spectral angle mapper
SBS sequential backward search
SFS sequential forward search
SVR support vector regression
UAS unmanned aerial systems
VIs vegetation indices
VIS visible
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