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Abstract: The use of small unmanned aerial system (UAS)-based structure-from-motion (SfM; pho-
togrammetry) and LiDAR point clouds has been widely discussed in the remote sensing commu-
nity. Here, we compared multiple aspects of the SfM and the LiDAR point clouds, collected concur-
rently in five UAS flights experimental fields of a short crop (snap bean), in order to explore how 
well the SfM approach performs compared with LiDAR for crop phenotyping. The main methods 
include calculating the cloud-to-mesh distance (C2M) maps between the preprocessed point clouds, 
as well as computing a multiscale model-to-model cloud comparison (M3C2) distance maps be-
tween the derived digital elevation models (DEMs) and crop height models (CHMs). We also eval-
uated the crop height and the row width from the CHMs and compared them with field measure-
ments for one of the data sets. Both SfM and LiDAR point clouds achieved an average RMSE of 
~0.02 m for crop height and an average RMSE of ~0.05 m for row width. The qualitative and quan-
titative analyses provided proof that the SfM approach is comparable to LiDAR under the same 
UAS flight settings. However, its altimetric accuracy largely relied on the number and distribution 
of the ground control points. 

Keywords: UAS; structure from motion; LiDAR; 3D point clouds; crop height; precision agriculture; 
DEM; CHM; M3C2 
 

1. Introduction 
Unmanned aerial systems/vehicles (UASs/UAVs), paired with structure-from-mo-

tion (SfM) image processing workflows, have lately emerged as a popular strategy for 
various geoscience applications [1,2]. By collecting overlapping image sequences using a 
high-resolution camera mounted on a UAS and then inputting those images to an SfM 
algorithm, users effectively can create a three-dimensional (3D) point cloud of a scanned 
field. Particularly in precision agriculture, the SfM point cloud approach can be used to 
derive structural parameters of crops, such as plant height [3,4], canopy volume [5,6], and 
leaf area coverage [7,8], all of which could significantly help farmers to enhance agricul-
tural management decisions [9]. 

Another widely used approach to generating 3D point clouds is light detection and 
ranging (LiDAR). LiDAR works by actively emitting high-frequency laser pulses toward 
the object and recording the reflected responses and transmitted time, from which range 
measurements can be computed [10]. Over the past decade, LiDAR successfully has been 
applied in forest inventory as either airborne laser scanners (ALS) [11–13] or terrestrial 
laser scanners (TLS) [14–16]. However, as UAS-LiDAR platforms have become more 
widely used, this approach has proven to be effective and accurate for the structural char-
acterization of shorter vegetation/crops [17–20]. LiDAR point clouds have obvious 
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advantages when compared with SfM point clouds, including high point density, robust-
ness to illumination changes, and the ability to obtain below-canopy information, because 
of its multiple return capability from single pulses. However, LiDAR has its own disad-
vantages: The cost of LiDAR is usually much higher than that of a typical high-resolution 
color camera used for SfM [6,21]. While SfM algorithms have successfully been integrated 
into commercial software such as Pix4D, Agisoft Photoscan, or open-source software in-
cluding OpenDroneMap, the preprocessing of a LiDAR point cloud is relatively more 
time-consuming and requires more effort, such as trajectory calculation, denoising, point 
cloud registration, and ground filtering [22,23]. 

Many studies used LiDAR as a baseline method to evaluate the relative accuracy of 
SfM point clouds. Some early studies have compared UAS-based SfM point clouds with 
data collected by TLS [3,4,18,24] and ALS [25–28]. For example, Holman et al. [3] com-
pared UAS-SfM-modeled wheat plant height with those derived from TLS and field meas-
urement of crop height (CH). Both SfM-derived and TLS-derived models achieve a root 
mean squared error (RMSE) of 0.03 m. Li et al. [26] used ALS and UAS-SfM point clouds 
to derive structural metrics of a maize and then used metrics to evaluate the leaf area 
index (LAI). The results showed that ALS achieve higher accuracy than SfM in evaluating 
the LAI, with 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2  = 0.85 and 𝑟𝑟𝑟𝑟𝑟𝑟𝑆𝑆𝐸𝐸 = 7.16% versus 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2  = 0.74 and 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 7.72%. 
Such comparisons with TLS and ALS have proved the effectiveness and accuracy of UAS-
SfM systems, while highlighting its limitations. However, another important question has 
yet to be answered: Is a UAS-SfM point cloud as accurate/precise as a LiDAR point cloud 
under the same flight settings, i.e., when an imaging camera and a LiDAR are installed on 
the same UAS? 

To the best of our knowledge, few studies directly compare UAS-LiDAR point clouds 
with UAS-SfM point clouds, especially in precision agriculture applications. Cao et al. [29] 
compared UAS-LiDAR and SfM data in a subtropical coastal planted forest of East China. 
They found strong correlations (r > 0.9) between metrics such as height percentiles and 
canopy cover, derived from the two modalities’ point clouds. The two kinds of data, how-
ever, were collected on different days and at different flight altitudes (80 m for LiDAR and 
500 m for SfM). Lin et al. [30] used a customized UAS-based mobile mapping system to 
simultaneously collect LiDAR and imagery data over coastal environments. Their results 
suggested that UAS LiDAR and SfM point clouds are comparable within a 5–10 cm range, 
and both provided high-resolution and high-quality topographic data. In the context of 
precision agriculture, Sofonia et al. [31] employed a side-by-side comparison of a Hover-
map LiDAR and a RedEdge multispectral camera, mounted on one UAS platform, for 
monitoring sugarcane growth response. They found that both systems demonstrated sim-
ilar capabilities for accurate CH measurements (𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2 = 0.85– 0.95), while LiDAR pro-
vided relatively more consistent and significant correlations. Shendryk et al. [32] pre-
dicted biomass in sugarcane using a UAS-based LiDAR and multispectral imagery sys-
tem. The authors found a similarity between the results of biomass prediction (𝑅𝑅�2 < 0.57). 
However, both modalities provided a limited perspective in terms of preliminary com-
parisons of the point clouds and focused more on the end-level comparisons. 

This study focused on the above question and is based on a comparison of UAS-Li-
DAR and UAS-SfM point clouds, collected at five different growth stages of a snap bean 
field. Moreover, while most of the previous studies involved relatively high-stature crops, 
such as rice [33,34], barley [35,36], wheat [3,37], sugarcane [31,32], maize [26,38], and sor-
ghum [39,40], which can grow to be taller than 1–3 m when mature, snap bean represents 
a short crop that only grows up to 0.6 m at most. It thus can be stated that snap bean 
results in more stringent requirements when attempting to assess limited vertical-range 
structural characteristics. 

Our study was executed as follows: (i) First, we preprocessed and geospatially regis-
tered LiDAR and SfM point clouds; we estimated the primitive absolute accuracies of the 
checkpoints in both point clouds by utilizing the recordings of ground control points 
(GCPs); (ii) we then directly compared the two kinds of point clouds in terms of a point 



Remote Sens. 2021, 13, 3975 3 of 22 
 

 

density map, histograms of z coordinates, and SfM point cloud to LiDAR-derived mesh 
(cloud-to-mesh (C2M)) distance maps; (iii) after implementing rasterization and interpo-
lation on the point clouds, we next compared their derived products, including digital 
elevation models (DEMs) and crop height models (CHMs), by calculating the difference 
of the models and the multiscale model-to-model cloud comparison (M3C2) distance; (iv) 
as a complement to the above comparisons, we made qualitative comparisons between 
the cross-sections of the two point clouds; (v) finally, we compared the CH and row width 
(RW) of sampled rows, derived from both point clouds, with in-situ measurements in one 
of the data sets. Based on all the analyses above, we hope to provide a definitive compar-
ison of UAS-based SfM vs. LiDAR point clouds in the context of the structural characteri-
zation of short broadacre crops, with snap bean being our proxy crop. 

2. Materials and Methods 
In this section, we first introduced the study site and the collected data (Section 2.1). 

We then explained the data processing steps (Section 2.2), followed by details on the meth-
ods and evaluation metrics that were applied to compare the data derived from the LiDAR 
and SfM approaches (Section 2.3). 

2.1. Study Site and Data Collection 
Our study site is located in Geneva, NY, USA (42°52′0.00″ N, 77° 1′43.00″ W; Figure 

1a). The field consisted of two plots that were 100 m apart in the north–south direction. 
The north plot had three replications of six snap bean cultivars: Venture, Huntington, Col-
ter, Cabot, Flavor Sweet, and Blevet. Each cultivar in each replication had four rows, re-
sulting in 72 rows in total. The south plot contained only the Huntington cultivar, with 40 
row segments treated as experimental plants and half of them inoculated with white mold 
after the first flowering stage. The sizes of the two plots were 1512 and 1416 m2, respec-
tively (Figure 1a). 

 
 

(a) (b) 

Figure 1. Details of the snap bean field. (a) The study site location and an RGB image mosaic of the field; (b) an example 
of the flight trajectory along with the crop height models (CHMs) of the two plots. 

The UAS system used a DJI Matrice 600 Pro hexacopter as a base platform. It con-
sisted of a global navigation satellite system (GNSS)/inertial measurement unit (IMU; 
Trimble APX-15 UAS V2), a Velodyne VLP-16 PuckTM LiDAR (Velodyne, San Jose, CA, 
USA), and a MicaSense RedEdgeTM multispectral camera (MicaSense, Seattle, WA, USA). 
The GNSS/IMU unit provided recordings of the geolocation and the GPS time during 
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flights. The VLP-16 LiDAR generated up to ~600,000 points/second in a dual return mode. 
It operated in a 360° horizontal field of view and a ±15° vertical field of view. The claimed 
range accuracy was ±3 cm, and the laser wavelength was 903 nm. The MicaSense RedEdge 
captured images of five spectral bands: blue, green, red, red edge, and near-infrared, cen-
tered at 475, 560, 668, 717, and 842 nm, respectively. We implemented five flights across 
five days to collect data on the snap bean crop at different growth stages. Figure 1b shows 
an example of the flight trajectory, along with a LiDAR point cloud. The flight information 
and the data set specifications are listed in Table 1. For data set #3, we took ground meas-
urements of the CH and the RW by sampling three times per row in the northern plot and 
two times per row segment in the southern plot by using a measuring tape. 

Table 1. Unmanned aerial system (UAS)-light detection and ranging (LiDAR) and multispectral imagery data sets’ speci-
fications. 

Data Set Number 1 2 3 4 5 
Date 1 July 2020 28 July 2020 6 August 2020 14 August 2020 24 August 2020 

Flight altitude (m) 25 25 22 25 25 
Flight speed (m/s) 3 2 2 2 2 

Flight line space (m) 6.6 5 5 5 5 
Ground sample dis-

tance (m/pixel) 
0.017 0.017 0.015 0.017 0.017 

Snap bean growth 
stage 

Bare ground Budding Eight days before full 
blooming 

Full blooming; 10 days 
ahead of harvest 

Ready for harvesting 

Number of images 
for structure-from-

motion (SfM) 
671 590 566 606 617 

2.2. Processing of the UAS-Based 3D Point Cloud Data 
The processing of the SfM and LiDAR point clouds mainly included three steps: (1) 

preparing the data for comparison (data preprocessing); (2) deriving gridded models from 
the point clouds, including DEMs, digital surface models (DSMs), and CHMs; and (3) ex-
tracting segments of the vegetation points, calculating the CH and the RW and comparing 
them with ground measurements. 

2.2.1. SfM and LiDAR Point Cloud Preprocessing 
We input the multispectral images to a Pix4Dmapper (v.4.6.4, Pix4D S.A., Prilly, Swit-

zerland) to generate SfM point clouds. While we mostly used it as an end-to-end tool, the 
basic principles of the SfM algorithm have been well-explained in previous studies 
[1,31,41,42]. First, the algorithm computes the keypoints and descriptors for all the images 
toward automatic image matching. In this step, at least 75% cross-track and along-track 
overlapping is recommended for the Micasense RedEdge camera [43] to ensure enough 
common features are identified. The algorithm next applies a bundle adjustment and a 3D 
scene reconstruction to generate a sparse point cloud, which then is densified to create a 
dense point cloud. The GCPs next are imported to georeference the point cloud. In our 
study, we used AeroPointsTM (Propeller, NSW, Australia) checkerboards as GCPs and 
evenly distributed them in the field during the flights. With a proper set-up, the global 
accuracy of the GCPs is claimed to be 10 mm + 1 ppm horizontally and 20 mm + 1 ppm 
vertically [44]. 

The SfM point cloud preprocessing was quite direct—we visualized the SfM point 
cloud in the software CloudCompare (v.2.12 alpha [45]) and cropped it spatially to valid 
scene extents by the manual image interpretation of the field color patterns. However, it 
is worth noting that in our study, the default georeferencing system (NAD 83/NAVD 88) 
for the AeroPoints was different from that of the APX-15 (WGS 84/EGM 96), which was 
used in generating coordinates for the LiDAR point clouds, while the essence of the z 
coordinates also differed. In AeroPoints, it implies the orthometric height (height above 
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geoid), while in APX-15, it refers to the ellipsoidal height (height above ellipsoid). For 
example, the difference between the ellipsoidal and the orthometric height was −35.00 m 
at the location of our study site in the WGS 84/EGM 96 geographic coordinate system. We 
therefore converted the recording of the GCPs’ coordinates using the software VDatum 
(v.4.0.1, NOAA, Washington, DC, USA [46]) to geospatially register the SfM point clouds 
with the LiDAR point clouds. 

The preprocessing of LiDAR point clouds included a few more steps: (1) retrieving 
the flight trajectory from the IMU file, which focused on the transformation of geograph-
ical coordinate and time units; (2) temporal and spatial cropping according to field bound-
aries and flight trajectories; (3) removing outliers and noise using a statistical outlier re-
moval (SOR) filter; (4) removing second return points and duplicate points; and (5) com-
puting the scan angles of the points by using the IMU flight trajectory; and then filtering 
out the points with large scan angles (>20°), which theoretically had larger errors. Our 
LiDAR data preprocessing steps were similar to those by Sofonia et al. [47], except that in 
step 4, we did not need the second return points. This was because the VLP-16 LiDAR can 
only distinguish between two returns per pulse when the distance between the two re-
turns is >1 m [48], while the heights of all the snap bean plants are <1 m. We filtered the 
points with too large scan angles in step 5, since larger scan angles resulted in the in-
creased off-nadir distances of the laser beams, thus leading to significant errors, due to the 
footprint size of a laser beam increasing at the square of the transmitting distance. For 
steps 2–4, we used LAStools [49] and CloudCompare; for steps 1 and 5, we used Python 
3 programming. 

2.2.2. Derivation of Digital Models 
As many previous UAS-based studies proposed [50–52], the derivation of the CHM 

involves deriving the DEM and the DSM, which was calculated as: 

CHM =  DSM −  DEM. (1) 

The DEMs were generated from the preprocessed SfM and LiDAR point clouds from 
data set #1, which was collected when the field contained only bare ground (Table 1). We 
set the grid spacing of the DEMs to 0.05 m, similar to the study of Lin and Habib [20]. We 
chose this value due to the following reasons: (1) it is small enough to retain plant struc-
tural details, and (2) it is large enough to ensure that most cells would include more than 
one point, i.e., cell values could be decided using actual data, instead of interpolation. For 
both the SfM and LiDAR point clouds, we first rasterized them based on point clouds with 
a regular spacing, by calculating the average z value in each cell. We then filled the empty 
cells using ordinary kriging interpolation in Surfer (v.15.3.307, Golden, CO, USA). We de-
rived the DSMs from data sets #2–5 using rasterization and interpolation, such as the DEM 
generation process except for one difference—in rasterization, we used the highest z 
value, instead of the average value as the representative for each cell. Finally, we com-
puted the CHMs using Equation (1). 

2.2.3. Calculating CH and RW from Vegetation Sample Points 
To evaluate the relative accuracy of the SfM-derived and LiDAR-derived CHMs, we 

calculated the CH and the RW from row segments in the CHMs from data set #3 and 
compared them with ground measurements. The extraction of segments of vegetation 
points is shown in Figure 2. We filtered out all the points with a height lower than 10 cm 
to ensure ground points did not impact the calculation. Within each segment, we calcu-
lated CH by finding an optimized top percentile of the z values. Similarly, we calculated 
the RW by finding an optimized difference between a well-above average percentile and 
a well-below average percentile of y values. The optimal values were determined by find-
ing the smallest RMSE between the derived metrics and the field measurements [23]. Spe-
cifically for the north plot, since the original direction of the rows were at an angle of 6.6° 
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due east (measured in CloudCompare), we manually applied a rigid transformation to 
rotate the point clouds to make the rows horizontal. 

 
Figure 2. An example of extraction of sampled vegetation points in the south plot. First, we manu-
ally selected 40 initial points (purple); then, points within a 0.8 m × 3 m square area centered at those 
initial points were extracted. 

2.3. Comparing Methods and Evaluation Metrics 
The sparsity and non-uniform point density of 3D point clouds introduce a level of 

complexity, which necessitates a multi-pronged approach to assessing the data quality. 
We thus evaluated the characteristics of the UAS-based SfM and LiDAR point clouds dur-
ing different processing stages. We first made preliminary comparisons among the “raw” 
data, such as the accuracy of GCPs’ centers, average density, and z-histograms. We then 
compared the preprocessed point clouds and their derived DEMs and CHMs. After that, 
we observed the cross-sections (side-view) of small segment samples in the preprocessed 
point clouds versus the CHMs in data set #3, to serve as a complement to the previous 
top-view comparisons. Finally, we selected data set #3 to compare the CH and the RW, 
derived from the CHMs, with ground measurements. 

2.3.1. Preliminary Comparisons 
The distribution of the valid GCPs for each data set is shown in Figure 3. In fact, we 

placed nine GCPs in the field during all flights, although a couple of them failed to operate 
properly due to equipment aging. Similar to Lin and Habib [20], the absolute accuracy of 
the SfM and LiDAR point clouds was assessed against the AeroPoints recordings of the 
GCPs deployed at the site. We manually identified them based on the patterns, in order 
to determine the coordinates of the center of AeroPoints GCPs from an SfM point cloud. 
Due to the uncertainty of the LiDAR detection range, the determination of the GCP centers 
in the LiDAR point cloud required a more complex strategy. LiDAR points of a planar 
panel had a significant vertical variance and exhibited “multiple layers” as opposed to the 
“single-layer” counterpart in an SfM point cloud. We applied the approach proposed in 
Lin and Habib [20] to identify the centers: (1) manually selecting initial centers based on 
the intensity patterns; (2) finding all points that lay within a spherical neighborhood with 
a radius of 0.25 m and are centered at the initial points; and (3) fitting a plane among the 
neighboring points and then projecting the initial points to the fitted plane. The projection 
points on the fitted planes were finally identified as the GCP centers from the LiDAR point 
clouds. It should be noted that we selected 0.25 m as the radius in step (2), because this 
radius ensured that all the points within the neighborhood were from the checkerboard, 
given that an AeroPoints GCP’s dimensions are 0.544 m × 0.544 m. Finally, we compared 
the average surface point densities of the SfM point clouds and LiDAR point clouds in all 
data sets and the histograms of their z coordinates. 
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(a) 1 July 2020 (b) 28 July 2020 (c) 6 August 2020 (d) 14 August 2020 (e) 24 August 2020 

Figure 3. Ground control point (GCP) distribution in the field for each data collection date. The red curves are the flight 
trajectories, while the blue crosses represent the GCPs’ locations. In (a), when the snap beans were almost invisible, the 
flight line covered the whole field including both north and south plots and the middle bare ground. In (b–e), when the 
snap beans grew at different stages, the flight lines covered only the two plots. 

Finally, we also calculated the average surface point densities and the histograms of 
z-coordinates for each data set. 

2.3.2. Derived Products Comparison 
Four point cloud comparison methods are commonly used to compare 3D point 

clouds: DEM of difference (DoD) [53–56], cloud-to-cloud (C2C) distance [57–60], C2M dis-
tance [47,61–63], and M3C2 distance [64–69]. The DoD approach subtracts two DEMs or 
DSMs using a top view and is fast/easy to implement and interpret. However, the disad-
vantages are that it requires gridded representation, only estimates vertical distance and 
is sensitive to errors caused by misregistration [70]. In the C2C approach, two point clouds 
are set as the reference point cloud and the compared point cloud, respectively. For each 
point in the compared point cloud, the closest point can be determined in the comparison 
point cloud. This is the fastest and simplest 3D comparison method [64]. The measured 
distance can be assessed as the x/y/z directions but is sensitive to the cloud roughness, 
outliers, and point spacing [68]. As the SfM point cloud had a significantly lower point 
density than the LiDAR point cloud, it resulted in a larger point spacing for the former. 
The DoD and C2C methods were not suitable for a direct comparison between the two 
modalities, so the C2M approach was used for a robust comparison. 

We used CloudCompare to calculate the C2M distance between the SfM and LiDAR 
point cloud-generated meshes. First, a mesh was generated using the Delaunay 2.5 D (best 
fitting plane) mesh tool from the LiDAR point cloud. Then, a C2M distance map was com-
puted for the SfM point clouds, relative to the LiDAR-generated meshes. The output was 
saved as a scalar field in the SfM point clouds. Thus, the point density difference between 
the two types of point clouds did not impact the results. 

The M3C2 is a relatively recent 3D comparison approach that calculates both dis-
tances and uncertainties [64]. It has advantages: (1) taking into account local normals, 
roughness, and registration errors, (2) allowing direct application to two un-rasterized 
point clouds (although it is still not ideal for the direct comparison of SfM with LiDAR, 
since SfM point clouds have a much lower density and even empty holes), and (3) result-
ing in distance calculations on the normal directions [64,68]. Therefore, we used the M3C2 
to compare the derived digital models (DEMs and CHMs) from the point clouds. The al-
gorithm includes four main steps: 
1. Find the “core” points, which are essentially a sub-sampled version from the original 

point cloud; 
2. For each core point, a normal vector is defined by fitting a plane to its neighbors, 

enclosed by a user-defined diameter 𝐷𝐷, which is named “normal scale”; 
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3. Given every core point and its normal vector, a cylinder can be defined via the user-
defined projection scale, 𝑑𝑑, and the cylinder depth, ℎ, oriented along the normal di-
rection. Thus, the intercept of the two clouds with the cylinder defines two subsets 
of points; and 

4. Project both subsets to the orientation axis of the cylinder, i.e., the normal vector, to 
generate two distributions of distances. The distance between the means or medians 
of the two distributions is the local distance, 𝐿𝐿M3C2. 
We used CloudCompare to implement the M3C2 in our study. Apart from the 𝐿𝐿M3C2 

distance map, CloudCompare also provided two more outputs: the distance uncertainty 
map and the change significance map. The distance uncertainty measure (at a level-of-
detection of 95%, i.e., 𝐿𝐿95%) was calculated by: 

𝐿𝐿95% =  ±1.96 ∗ (�𝜎𝜎1(𝑑𝑑)2

𝑛𝑛1
+ 𝜎𝜎2(𝑑𝑑)2

𝑛𝑛2
+ 𝑟𝑟), (2) 

where 𝜎𝜎1 and 𝜎𝜎2 are the variances of point positions for each subset in step 3, 𝑛𝑛1 and 
𝑛𝑛2 are the number of points in the subsets, and r is the co-registration error between two 
point clouds. These parameters are determined locally by the algorithm itself. The change 
significance map consists of binary values that indicate whether the distance corresponds 
to a real change or not [71]. 

As described above, three key parameters, namely the projection scale (𝑑𝑑), the cylin-
der depth (ℎ), and the normal scale (𝐷𝐷), need to be manually defined. We set 𝑑𝑑 as 0.15 m, 
because the point spacings for the DEMs and the CHMs were 0.05 m and thus at least six 
points would be included in each sub-cloud, which was more than the four points re-
quired by the M3C2 algorithm [65]. Considering the scale of snap bean—CH (up to ~0.65 
m) and RW (up to ~0.70 m), we set ℎ = 0.80 m, so that when the normals were calculated 
on one side of a row, the cylinder in each local neighborhood was large enough to enclose 
sufficient points and small enough not to enclose unwanted points from the other side of 
the row. Previous research based on landslide [66], open-pit mines [65], and canyon stud-
ies [64] generally set 𝐷𝐷 as 20–25 times the average roughness in each point cloud. How-
ever, in our application, when 𝐷𝐷 varied from 0.15 to 0.30 m, the average roughness of the 
digital models ranged from 0.01 to 0.03 m, i.e., 𝐷𝐷 were 10–15 times the roughness. Based 
on our preliminary knowledge of snap bean crops, we considered the size of the snap 
beans as also limiting the value of D. More specifically, a proper 𝐷𝐷 should fall within 
0.15–0.40 m, so that abundant points can be included to calculate the normals and to en-
sure that the normals reflect the genuine local features of the crops. We therefore fixed the 
normal scale 𝐷𝐷 at 0.30 m, which was twice the projection scale (𝑑𝑑), a ratio that was close 
to the settings used in the aforementioned studies [64–66,68]. 

We used three standard accuracy measures to evaluate the differences calculated by 
C2M and M3C2 approaches, namely the mean difference (MD), the standard deviation of 
the difference (St. Dev), and the RMSE. 

3. Results 
3.1. Preliminary Comparison of the Point Clouds 
3.1.1. Absolute Accuracy of GCPs 

Figure 4 shows the box and whisker plots of the RMSEs of the differences between 
the 3D point cloud-derived coordinates of the GCPs centers against the AeroPoints meas-
urements. The results included all the GCPs in the five data sets. We found that for both 
SfM and LiDAR point clouds, the average uncertainties (RMSE) in the x/y/z directions 
were about 0.01–0.03 m. Thus, both SfM and LiDAR point clouds achieved high accura-
cies. 
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(a) SfM-derived GCP centers (b) LiDAR-derived GCP centers 

Figure 4. Root mean squared errors (RMSEs) of the difference of the x/y/z coordinates of the GCPs centers derived from 
(a) SfM point clouds and (b) LiDAR point clouds versus the corresponding AeroPoints recordings. 

3.1.2. Average Density and Histograms of the z Coordinate 
The average point densities of each SfM point cloud and each LiDAR point cloud are 

shown in Figure 5. The SfM point density ranged between 140 and 840 pts/m2, while the 
LiDAR point density ranged between 1400 and 2800 pts/m2. It was not surprising that the 
point densities of both plots had a slight difference, since the data of the south plot and 
the north plot were collected during the same flights, with the same flight altitude, flight 
speed, flight line space, and even number of flight lines. This furthermore proved that, 
despite the difference of the snap bean variabilities in the two plots, the surface point den-
sity was mainly determined by the flight settings. 

 
Figure 5. Average surface point densities of the point clouds. 

Figure 6 shows the histograms of all the point clouds. We found that SfM and LiDAR 
had similar distributions of bins for all data sets. The south plot histograms were more 
symmetric than the north plot histograms, while the latter usually had a long tail (more 
bins of small z-values). This was attributed to the south plot containing only one snap 
bean cultivar; these single-cultivar plants grew more uniformly than in the north plot, 
which had six cultivars. By comparing the first column with the third column, we ob-
served that the bins of the small values in the LiDAR histograms were higher than in the 
SfM histograms, which indicated that more near-ground information was retained. This 
was likely due to the low-altitude points originating from stems near the ground and be-
low leaves; LiDAR could actively scan them when its beam hit the stems at the right off-
nadir angle, while the SfM point cloud was generated “passively” from imagery, on which 
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the stems tended to show up as unlit/dim pixels, given that they were either in shadow or 
visually fully occluded. 

 
SfM LiDAR 

South plot North plot South plot North plot 

1 July 
2020 

    

28 July 
2020 

    

6 August 
2020 

    

14 August 
2020 

    

24 August 
2020 

    
Figure 6. Histograms of the z coordinates of the SfM and LiDAR 3D point clouds in all the data sets. Note that the SfM 
and LiDAR point clouds exhibited similar distributions; however, the LiDAR retained more information for the low-alti-
tude points than SfM. 

3.2. C2M Distance Map Derived from the Preprocessed Point Clouds 
The C2M distance maps were computed for both the north and south plots for all 

data sets (Figure 7). We found that the errors from the vegetation points were generally 
greater than those from the ground points. Most of the C2M maps exhibited uniformly 
distributed differences over the whole plot, except for the south plot on 28 July 2020 and 
the north plot on 24 August 2020; both dates presented relatively more significant errors 
in the top left corner. This was attributed to the unevenly distributed valid GCPs on these 
two dates (Figure 3), i.e., there was no valid GCP near those corners. Table 2 shows the 
statistics of the C2M maps. Most of the differences were below 0.05 m (RMSE = 0.03–0.05 
m), except for the north plot in the last data set (RMSE = 0.08 m). 
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 South plot North plot 

1 
July 
2020 

  

28 
July 
2020 

  

6 
Au-
gust 
2020 

  

14 
Au-
gust 
2020 

  

24 
Au-
gust 
2020 

  
Figure 7. Cloud-to-mesh (C2M) distance maps of all the data sets, generated by calculating the difference between the SfM 
point clouds and LiDAR point cloud-derived meshes. Note that the errors from the vegetation points were generally 
greater than those from the ground points. The unit of the histogram labels is meter. 
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Table 2. The statistical metrics of the C2M distance maps of all the datasets. 

Date 
MD (m) 

Standard Deviation of 
the Difference  

(St. Dev; m) 
RMSE (m) 

South North South North South North 
1 July 2020 −0.01 −0.03 0.02 0.03 0.02 0.04 
28 July 2020 0.01 0.01 0.04 0.03 0.04 0.03 

6 August 2020 0.02 0.02 0.04 0.04 0.05 0.05 
14 August 2020 0.01 0 0.03 0.03 0.03 0.03 
24 August 2020 0.01 0.03 0.03 0.07 0.03 0.08 

3.3. M3C2 Distance Map Derived from the DEMs and the CHMs 
The results of the M3C2 maps are shown in Figure 8. We eliminated the outlier points 

with significant uncertainties (above 0.15 m) and large absolute errors (far beyond the 
prominent peak of the histogram). The remainder of the points are shown below. Table 3 
shows the statistical metrics of the M3C2 distance maps. By comparing Figure 8 with Fig-
ure 7, we found that the M3C2 maps better reflected the spatial distribution of the differ-
ences than the C2M maps by providing the following: (1) stronger contrast between 
warmer colors (taller) and colder colors (shorter); and (2) distance histograms that exhib-
ited larger ranges. Table 3 shows that, except for the data sets from 28 July 2020 to 24 
August 2020, which exhibited large errors/differences (RMSE = 0.10–0.18 m), the other 
three data sets showed distance differences ranging between 0.05 and 0.10 m. 

 South plot North plot 

1 
July 
2020 

  

28 
July 
2020 
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gust 
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14 
Au-
gust 
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24 
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gust 
2020 

  

Figure 8. The SfM vs. LiDAR point cloud multiscale model-to-model cloud comparison (M3C2) distance maps. The outlier 
points with significant uncertainties (above 0.15 m) and large absolute errors (far beyond the prominent peak of the his-
togram) were removed. There are a more obvious contrast and a larger variation of distances in comparison with in the 
C2M maps from Figure 7. The unit of the histogram labels is meter. 

Table 3. The statistical metrics of the M3C2 distance maps of all the datasets. 

Date 
MD (m) St. Dev (m) RMSE (m) 

South North South North South North 
1 July 2020 0.08 0.05 0.02 0.01 0.08 0.05 
28 July 2020 0.12 0.10 0.13 0.06 0.18 0.12 

6 August 2020 0.04 0.05 0.05 0.05 0.07 0.07 
14 August 2020 0.07 0.04 0.06 0.05 0.09 0.06 
24 August 2020 0.07 0.14 0.07 0.11 0.10 0.17 

3.4. Comparison of Sampled Cross-Sections in Point Clouds 
We extracted two types of cross-sections by segmenting out thin slices of points 

across rows (Figure 9a,b,e,f) and along a row (Figure 9c,d,g,h) from a top-down view; this 
was performed, since the snap bean field exhibited repetitive patterns. The SfM point 
cloud was a “single-layer” point cloud that envelopes the snap bean plants, while the Li-
DAR point cloud presented “multiple layers” with much denser points in the 3D space. 
Although both point clouds could detect the snap bean rows and alleys (bare ground area 
between rows), the LiDAR point clouds retained more detail of the valleys than did the 
SfM point clouds. The SfM point clouds were generally higher than the LiDAR point 
clouds, and so were the derived CHMs. By comparing the left column (Figure 9a,c,e,g) 
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with the right column (Figure 9b,d,f,h), we also observed that the CHM models did pro-
vide a clearer view of the geometric shape of the field. 

 Preprocessed point cloud CHM 

South plot, 
y-z plane 

  

South plot, 
x-z plane 

  

North plot, 
y-z plane 

  

North plot, 
x-z plane 

  
Figure 9. Sampled cross-sections in data set #3, collected on 6 August 2020. (a,c,e,g) are comparisons between the prepro-
cessed SfM and LiDAR point clouds; (b,d,f,h) are comparisons between the CHMs derived from the two kinds of point 
clouds. Purple points are from the SfM point clouds/CHMs, and white points are from the LiDAR point clouds/CHMs. 
The images in the left column were cropped directly from the preprocessed point clouds, while the images on the right 
column were cropped from CHMs derived from the point clouds. The first and third rows were projected on the y-z plane, 
and the second and fourth rows were projected on the x-z plane. 

3.5. Comparison of the Sampled CH and RW 
As described in Section 2.2.3, different top percentiles of z-values resulted in different 

predictions of CH and thus yielded different errors when compared to ground truth meas-
urements. The same was true for the central percentiles of y-values in terms of RW. Figure 
10 shows the absolute errors of the predicted CH and RW from the SfM-CHM versus the 
corresponding ground measurements in data set #3, as per different percentiles. We could 
find the best SfM results by locating the percentile, which generated the lowest RMSE, by 
observing the curves of the RMSE vs. percentile. We applied the same approach to the 
LiDAR point clouds and obtained the statistical metrics listed in Table 4. We found that 
the errors for the north plot, which had a larger cultivar variety, were larger than those 
for the south plot. For both point clouds, the CH calculation turned out to be more accu-
rate than the RW calculation. We found that the SfM approach matched LiDAR as modal-
ity and even performed slightly better when evaluating CH, by comparing the RMSEs 
from both SfM and LiDAR. The 0.1 interval on the x-axis resulted in the curves for the SfM 
approach “oscillating” more obviously than those from LiDAR. This was attributed to the 
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fact that many points in the SfM CHM were generated by interpolation, while most of the 
points in the LiDAR CHM were generated by selecting representative samples among real 
points. In LiDAR-CHMs, the best top percentile of z-values for calculating CH was 
98.8% ± 0.4%, and for calculating RW, it was 95.7% ± 0; for the SfM-CHMs, the best cen-
tral percentile of y-values for calculating CH was 89.2% ± 2.4%, and that for calculating 
RW was 89.6% ± 1.6%. 

 
SfM 

South plot North plot 

Crop height   

  

Row width   

  
Figure 10. A statistical representation of the SfM-CHM-derived crop height and row width versus the field measurements 
in data set #3. 
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Table 4. The best percentiles that determined the crop height and the row width, derived from the SfM-CHM and the 
LiDAR-CHM in data set #3 and the statistical metrics of the errors of the predicted values versus ground truth measure-
ments. 

 Best Percentile (%) Mean (m) St. Dev (m) RMSE (m) 
South North South North South North South North Average 

CH 
SfM 86.8 91.5 0.002 −0.001 0.013 0.023 0.012 0.022 0.017 

LiDAR 98.4 99.2 −0.001 −0.003 0.014 0.03 0.013 0.029 0.021 

RW 
SfM 91.2 88 0.004 −0.014 0.041 0.056 0.038 0.056 0.047 

LiDAR 95.7 95.7 −0.001 −0.007 0.062 0.051 0.058 0.05 0.054 

4. Discussion 
4.1. Qualitative and Quantitative Comparisons of the Two Modalities 

The qualitative comparison between the SfM and LiDAR point clouds in our study 
included observations of the z-histograms, the C2M distance maps, the M3C2 distance 
map, and the cross-sections projected on two vertical planes. Each of the methods in-
cluded results from both the north plot and the south plot in the field. We concluded that 
the differences between the two kinds of point clouds were not discernable in the z-histo-
grams and were slight in the C2M distance maps. The M3C2 approach, in contrast, which 
calculates the difference in normal directions, revealed more obvious spatial variability. 

Most parallel studies that used the M3C2 algorithm to compare UAS-SfM with Li-
DAR were in geomorphological applications, and their LiDAR systems varied. Cook [72] 
compared the UAS-SfM point cloud of a bedrock gorge with terrestrial LiDAR data during 
the same survey period using the M3C2 algorithm. While the dominant GSD was ~1.8–2.6 
cm, the author reported an RMSE of 0.3–0.4 m; however, that study also found that that 
the SfM accuracy varied by different surface features, with vegetation, water, and other 
textures causing more errors. Bash et al. [73] analyzed the precision and accuracy of a UAS 
SfM point cloud versus airborne LiDAR data over a spring snow surface at Haig Glacier; 
with a GSD of 2.4 cm, most of the errors were within a range of −0.049 ± 0.111 𝑚𝑚. Our 
M3C2 distance between UAS-based LiDAR and SfM point clouds resulted in distance 
RMSEs of 0.05–0.18 m, which seemed to be slightly better than those from previous stud-
ies. However, this also could be attributed to the smaller GSD of 0.017 m in our study, 
while our study field only contained vegetation and ground surfaces, which were rela-
tively more homogeneous than the sites from previous studies. 

From the SfM point cloud in data set #3, we obtained RMSEs of 0.01 m and 0.02 m by 
directly comparing the calculated CH with the observations of the south plot and the 
north plot, respectively. The accuracies (in terms of the scales of RMSE and the relative 
RMSE) surpassed many related studies. Becirevic et al. [69] tested the effectiveness of 
UAS-based SfM point clouds for measuring the CH of winter wheat (up to 1 m when 
mature) and obtained an RMSE of 0.022 m in a linear regression model between the ob-
served and calculated values. De Souza et al. [51] evaluated the CH of sugarcane (up to 
3.2 m when mature) using SfM point clouds generated on a fixed-wing UAS platform and 
reported an RMSE of 0.40 m. Chang et al. [50], in turn, monitored the CH of sorghum 
(Sorghum bicolor; grew up to 2.7 m) using an SfM point cloud and achieved an RMSE of 
0.33 m. Finally, Ziliani et al. [18] compared the CH of a maize (up to 2 m when mature), 
derived from fixed-wing UAS-based SfM point clouds, with corresponding field meas-
urements and obtained an RMSE of 0.21 m during the flowering growth stage. This was 
corroborated by Chu et al. [74], who also reported similar accuracies for a maize. 
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4.2. Importance of the GCPs 
The number and distribution of the GCPs turned out to have a significant impact on 

the SfM point cloud accuracies. We found that the sections of the study area that contained 
no or limited GCPs tended to exhibit significant positive or negative differences, espe-
cially when we compared the M3C2 distance map with the locations of the GCPs for the 
south plot in data set #2 (28 July 2020) and the north plot in data set #5. Sanz-Ablanedo et 
al. [75] discussed the critical impact of the number and location of the GCPs on the accu-
racy of SfM point clouds. As shown in Figure 11, they found that fewer GCPs would cause 
the RMSE in the selected evaluation locations to be ±5 times the average GSD of the study. 
As the number of GCPs increased to >2 GCPs per 100 photos, the altimetric accuracy 
would converge to approximately twice the GSD. Our results for the C2M distance maps 
nearly matched this plot. For example, as shown in data set #5 in Table 2, while both plots 
contained nearly 300 images, the north plot had an RMSE of 0.08 m (about five times of 
GSD), because it only had two GCPs (0.67 GCPs per 100 photos), while the south plot had 
an RMSE of 0.03 m (about two times the GSD), because it had 5 GCPs (1.6 GCPs per 100 
photos). Sanz-Ablanedo et al. also recommended that GCPs should be evenly distributed, 
ideally in a triangular mesh grid [75]. This claim was born out by the apparent patterns of 
significant errors in the south plot for data set #3 and the north plot for data set #5. 

 
Figure 11. Accuracies at check points/locations versus the number of control points per 100 photos. 
Reproduced with permission from Sanz-Ablanedo et al. [75], Remote Sensing; published by MDPI, 
2018. 

4.3. Limitations and Future Research 
It is worth noting that we implemented all our flights in a “striped” pattern, i.e., sen-

sors scanned in only one direction, which was similar to previous studies [18,50,51]. A 
number of other relevant studies, however, applied “grids” (cross-flight) patterns that 
covered two perpendicular scanning directions [19,31,47]. The gridded pattern arguably 
enables the sensors to generate improved point clouds, since the flight design covers more 
scan angles. Therefore, we contend that the accuracies of the calculated CH and RW could 
be improved by adjusting the flight pattern similarly. 

We set the flight altitude at around 25 m and the flight speed at around 2 m/s in order 
to ensure consistency in data sets #2–5. It seems reasonable that if flights were executed at 
higher altitudes and speeds, the accuracies may decrease. Because the point density of 
LiDAR point clouds would be lower, the overlapping area among images for the SfM 
point clouds would decrease and the features in the images may be coarser. 
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Finally, we evaluated and compared the CH and the RW only in data set #3. The 
transferability of the optimized percentiles applied in the CHM models therefore has not 
been fully tested. This aspect should be addressed in future research. From a fundamental 
view, it is challenging to make concrete measurements of the actual CH and RW, due to 
the complexity of the structural characteristics of plants, i.e., leaves and stems consisting 
of irregular and discontinuous shapes, and their structural properties could easily change 
according to environmental conditions, such as temperature, time of the day, and wind 
speed/direction. As is widely applied in other research efforts [19,35,76,77], the most direct 
way to approximate the true values of CH was using a ruler to sample several times per 
unit (row or segment of a row) and then averaging the discrete sampled values as a rep-
resentative of the unit. However, through the point clouds, we had access to the entire 
unit or plot. What we did was essentially averaging the nearly continuous measurements 
(tens or hundreds of points per unit) in the CHMs and then comparing these values with 
field measurements. This “continuous” versus “discrete” principle inevitably will lead to 
some degree of deviation in the comparison of results. Furthermore, it also presents a 
challenge related to our current methodology—do we need a more reliable method to 
evaluate the accuracy of point clouds according to not just discrete values, but rather 
based on their continuous nature? Future research may consider dealing with this chal-
lenge. 

5. Conclusions 
This study performed comprehensive comparisons between SfM and LiDAR point 

clouds, collected concurrently for a snap bean field in Geneva, NY, USA. Both qualitative 
and quantitative comparisons were presented to verify the effectiveness of the two mo-
dalities’ point clouds for generating DEMs and CHMs and their accuracies when evaluat-
ing CH and RW. The results revealed that the SfM point clouds, despite their relatively 
low point density, could provide high-quality DEMs and CHMs, which were comparable 
to their LiDAR counterparts. We also found that both SfM and LiDAR point clouds 
achieved a high accuracy for assessment of CH and RW—we obtained RMSEs of ~0.02 m 
for CH and ~0.05 m for RW. 

As crop sustainability and management efficiency become the trends in precision ag-
riculture [78,79], our findings could help farmers or third-party companies to select a 
proper remote sensing modality with better trade-offs between cost and accuracy, when 
it comes to the structural characterization of crops. Since snap beans are shorter than many 
broadacre crops such as rice, sugarcane, and maize, we contend that the evaluation results 
would likely be even better for these taller crops, should the same settings and methods 
be applied. Our methods and results thus should be extensible to other crops, such as 
soybeans and beets, which structurally resemble snap beans. These results thus bode well 
for the eventual use of SfM-based point clouds, which are significantly cheaper to collect 
than LiDAR-based 3D assessments, for the extensive assessment of crop structure and 
eventually models based on such structures, e.g., growth-and-yield models. 
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