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Abstract: New York state is among the largest producers of table beets in the United States, which,
by extension, has placed a new focus on precision crop management. For example, an operational
unmanned aerial system (UAS)-based yield forecasting tool could prove helpful for the efficient
management and harvest scheduling of crops for factory feedstock. The objective of this study was to
evaluate the feasibility of predicting the weight of table beet roots from spectral and textural features,
obtained from hyperspectral images collected via UAS. We identified specific wavelengths with
significant predictive ability, e.g., we down-select >200 wavelengths to those spectral indices sensitive
to root yield (weight per unit length). Multivariate linear regression was used, and the accuracy
and precision were evaluated at different growth stages throughout the season to evaluate temporal
plasticity. Models at each growth stage exhibited similar results (albeit with different wavelength
indices), with the LOOCV (leave-one-out cross-validation) R2 ranging from 0.85 to 0.90 and RMSE of
10.81–12.93% for the best-performing models in each growth stage. Among visible and NIR spectral
regions, the 760–920 nm-wavelength region contained the most wavelength indices highly correlated
with table beet root yield. We recommend future studies to further test our proposed wavelength
indices on data collected from different geographic locations and seasons to validate our results.

Keywords: UAS; UAV; texture index; vegetation index; crop management; hyperspectral image; table
beet; yield estimation

1. Introduction

Table beet (Beta vulgaris spp. vulgaris: Family Chenopodiaceae) consumption has
increased recently, primarily due to an enhanced awareness of the potential health ben-
efits [1], e.g., beets are a good source of dietary fiber and potassium [2]. Furthermore,
Betalains from table beet roots represent a new class of dietary cationized antioxidants with
excellent antiradical impact and antioxidant activity, and they have been linked to cancer
prevention [3,4]. With the ever-increasing popularity and increasing production of table
beets, our ability to predict root yield before harvest has become essential for both logistical
planning and within-season crop inputs to manipulate yield.

Researchers have identified the suitability of unmanned aerial systems (UAS) to spec-
trally map large crop areas in a short duration, specifically for applications requiring high
spatial resolution. The increased availability of UAS and miniaturized sensors [5] has also
catalyzed various applications for UAS in agriculture [6]. Uses include, but are not limited
to, the assessment of nutrient content [7,8], disease [9,10], above-ground biomass [11],
leaf area index [12], evapotranspiration [13], water stress [14], weed presence [15], and
yield [16–18] of various crops.

Hyperspectral sensors sample a wide range of narrow, contiguously spaced spec-
tral information. As such, hyperspectral imagery (HSI) contains more detailed spectral
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characteristics than its multispectral counterpart, thus enabling extraction of actionable
spectral information from data [19]. However, this increased information leads to a high
dimensionality challenge [20]. The issue is further aggravated in precision agriculture,
where the number of ground truth samples often is limited. One way to solve this is to
use dimensionality reduction techniques [21]. However, algorithms developed from these
techniques could hinder the detection of prominent wavelength regions indicative of a
particular phenomenon. Results may also not be transferable to affordable, operational
multispectral solutions. On the other hand, narrow-band indices often enable a more
physiology-based understanding of specific crop applications [22–24].

An HSI data cube is a combination of spectral and spatial information. Analysis
of narrow-band spectral indices alone does not harness the full scope of information
available from such high-dimensional data. Texture features enable us to integrate spatial
information, where texture represents the pattern of intensity variations in an image. After
the development of texture measures [25–28], they were initially used for land use and
land cover classification of satellite imagery [29–34]. Lu and Batistella [35] subsequently
explored the relationship between texture measures and above-ground biomass (AGB)
using Landsat Thematic Mapper (TM) data in Rondônia (Brazilian Amazon) and showed
the importance of texture measures for estimating AGB, specifically for a mature forest.
Sarker and Nichol [36] found stronger correlations for forest AGB using texture parameters
than spectral parameters. More specifically, their best-performing model uses texture
ratio indices. Eckert [37], Kelsey and Neff [38] found similar results applying texture
parameters to a different dataset. These authors stressed that since vegetation indices
saturate for medium to high canopy densities [39], adding texture indices often leads to
these better-performing models.

While texture analysis has been used extensively with multispectral data in the remote
sensing domain, its uses with hyperspectral imagery are more ubiquitous in food quality
assessment utilizing in-house imaging techniques [40–45]. Furthermore, all studies showed
better performance for their respective goals with the fusion of both textural and spectral
features. However, in most of these papers [42–44], texture features were extracted from
the principal components of HSI, preventing the identification of informative specific
wavelengths. They were able to distinguish between fresh and frozen fish fillet [42],
detecting yellow rust in wheat [43], and quantify water-holding capacity in chicken breast
fillet [44]. Yang et al. [45], in turn, extracted texture features from select critical spectral
bands, after first identifying the influential bands from relevant spectral signatures. Their
model was able to predict water-holding capacity of chicken breast fillet with an R2 of 0.80
and RMSE of 0.80. Studies such as these hint at the potential utility of texture metrics from
hyperspectral imagery.

UAS provides images of the crop canopy, while our goal is to measure the weight
of subterranean table beet root biomass. However, since the yield of a root crop is the
excess nutrient content stored in the root [46], it may be possible to estimate root yield
from the above canopy imagery. However, the ratio of nutrient storage in the roots and top
growth infrequently correlates [47], resulting in difficulty in determining root yield. Various
vegetation indices were used to predict yields of potatoes [47–50] and carrots [51] with
mixed success. Al-Gaadi et al. [47] and Suarez et al. [51] both used solely vegetation indices
obtained from satellite imageries to predict potato and carrot, with the best-performing
R2 values of 0.65 and 0.77, respectively. The addition of structural parameters, such as
LAI (leaf area index) in the case of Luo et al. [48] and DSM for Li et al. [49], showed
some improvement in model performance. Nevertheless, the full spectra of hyperspectral
imagery proved to be more effective for Li et al. [49].

Previous B. vulgaris-specific studies are scarce, with Olson et al. [52] predicting sugar
beet root yield with an R2 of 0.82 using multispectral imagery obtained from UAS. This
study builds upon our previous study [53] by predicting table beet root weight (R2 = 0.89)
with UAS-based multispectral imagery.
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In this study, our objective was to assess the predictability of beet root yield (weight
per unit length) entirely from HSI to determine the benefits of high-dimensional spectral
data. A secondary objective was to quantify the effect of using both narrow-band spectral
and textural features individually and in combination. Finally, we evaluate table beet root
yield at five different growth stages during the season to assess the ideal flight timing and
its impact on model performance.

2. Materials and Methods
2.1. Data Collection

Table beets (cv. Ruby Queen) were planted at Cornell AgriTech, Geneva, New York,
USA. The beets were planted in a 60 m × 100 m field on 20 May 2021, representing 18 dif-
ferent plots where the root weight of the table beets was collected. Each of the plots was
1.52 m (5 ft) long. The roots were manually harvested on August 5, 2021, after which root
weight was measured.

We collected hyperspectral imagery of the entire field using a Headwall Photonics
Nano-Hyperspec imaging spectrometer (272 spectral bands; 400–1000 nm), which was
fitted onto DJI Matrice 600 UAS. The ground sampling distance of our imagery was 3 cm.
A hyperspectral image cube, captured from the UAS for all 18 plots, is shown in Figure 1. A
MicaSense RedEdge-M camera [54] also was fitted to the drone, which captured five bands
(475, 560, 668, 717 and 840 nm) of multispectral images. We flew our UAS at five different
stages during the growing season, from the sowing date to harvest. The synopsis of the
data collection is shown in Table 1. The first flight date was selected to align with canopy
emergence. The second flight was chosen to correspond with canopy closure (last phase of
the leaf development). The rest of the dates were chosen based on weather conditions.
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Table 1. Data collection milestones. All data were collected in 2021.

Date Milestone Growth Stages

20-May Crop planted Germination
16-Jun 1st Flight Leaf development (crop emergence)

7-Jul 2nd Flight Leaf development (more than
9 leaves unfolded)

15-Jul 3rd Flight Rosette growth
20-Jul 4th Flight Rosette growth (cont’d)
2-Aug 5th Flight Harvest-ready
5-Aug Harvest Harvest-ready

2.2. Data Preprocessing

The raw digital count of the HSI was orthorectified and converted to radiance using
Headwall’s Hyperspec III SpectralView V3.1 software [55]. Simultaneously, an orthorec-
tified, spatially registered mosaic of the multispectral image was formed using Pix4D
V4.6.3 [56]. Ten georegistered ground control points (AeroPoints) were deployed in the
field to ensure accurate spatial registration of the multispectral images. These multispectral
mosaics were then used to register the HSI spatially. All the study plots were marked in
the field with orange plates, staked above the table beet canopy, which helped visually
identify the plots from the HSI mosaics. The study plots were clipped from the mosaic via
a rectangular per-plot shapefile. The shapefiles’ dimensions were 0.67 m (distance between
two adjacent crop rows) across the row and 1.52 m (the length of the study plot) along the
row. The box and HSI were spatially registered to ensure image analysis of the same crops
across all the flights.

Since radiance data are susceptible to changes in illumination conditions, the HSI data
were converted from radiance to reflectance [19]. Four panels (black, dark gray, medium
gray, and light gray) were placed in the field to serve as calibration targets. The reflectance
of each panel was measured using an SVC spectrometer. We also extracted the radiance
of each panel from the HSI mosaic of the UAS data. The empirical line method tool in
ENVI V5.3 [57] was used to convert the radiance HSI of the study plots to reflectance. We
ignored the last 32 wavelength bands in the HSI imagery, given their noisy nature toward
the detector fall-off range.

2.3. Denoising

Most UAS-based HSI data contain thermal noise, quantization noise and shot noise [58].
We suppressed as much noise from the image as possible to draw conclusive results before
performing any analysis.

Our high-level denoising procedure was similar to Chen et al. [59]. This method hinges
on the fact that most noise is contained in principal components with lower eigenvalues.
As a result, a principal component analysis (PCA) was performed on the scene containing
n bands, and the top-k components were retained and kept unaltered, with the remaining
components being passed for denoising; k was determined by the minimum average partial
(MAP) test [60]. Consecutively, n-k components were passed to dual-tree complex wavelet
transformations [61] for denoising, after which an inverse PCA was performed to obtain the
denoised image. We refer the reader to [18] for more information regarding this approach.

2.4. Feature Extraction

The high dimensionality of HSI is a well-documented problem across scientific litera-
ture [20]. Therefore, we carefully selected the bands, or a combination of bands, to derive a
predictive model to reduce the complexity of analysis when dealing with a high number
of bands.
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2.4.1. Reflectance Features

Spectral angle mapper [62] was used to mask the vegetation from the soil in the
imagery, after which the mean vegetation spectra for each plot were evaluated. Figure 2a
shows the mean vegetation spectra across all flights. We observed the increase in reflectance
in the NIR region with each successive flight, which was expected since as vegetation
matures, canopy layering typically increases.
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Huete et al. [63] examined cotton canopy spectra and concluded that the spectra of
soil and vegetation mix interactively, and thus, normalization is crucial to remove the
background effect. Normalized difference indices of various wavelength bands have been
found to normalize soil background spectral variations [64] while simultaneously reducing
the effect of sun and sensor view angle [65]. Additionally, the well-known normalized
difference vegetation index (NDVI) has historically been used to map vegetation [66] while
also being used to predict leaf area index (LAI) [67], crop biomass [68], and yield [69]. The
shortcomings of using NDVI have also been well documented [70–74]. NDVI is restricted
to just two specific band pairs, so instead, we evaluated normalized difference ratio indices
(NDRI) of every possible combination of narrow-band reflectance, as follows:

NDRI =
R1 − R2

R1 + R2
(1)

This method of identifying wavelength pairs has been used in [75] to understand the
relationship between evapotranspiration, to evaluate biophysical characteristics of cotton,
potato, soybeans, corn and sunflower crops [76], and to estimate biomass and nitrogen
concentrations in winter wheat [77].

2.4.2. Texture Features

The texture of a plot is another possible source of features for our model. Haral-
ick et al. [25] documented the most widely used texture feature extraction method, which
was also used in this study. It involves the calculation of the gray-level co-occurrence
matrix (GLCM), followed by extracting descriptive statistics from the matrix. GLCM is a
frequency table representing the number of times a specific tone occurs next to one another.
The tone is the quantized level of pixel values for a particular spectral band. One of the
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many descriptive statistics is the mean of GLCM, and it is given by Equation (2), where Ng
is the quantization level and P(i, j) is the probability of occurrence of pixel j next to i.

Mean =
Ng

∑
i=1

Ng

∑
j=1

i ∗ P(i, j) (2)

In several previous studies [11,35,37,38,78], the top-performing models predominantly
consisted of the mean of GLCM. Furthermore, the GLCM mean represents the value of the
more frequently occurring mean tonal level within a particular window size. Thus, the
GLCM means contains both spatial and spectral variation information.

The texture features were calculated over all 240 narrow wavelength bands. An
11 × 11 kernel size was used to calculate the GLCM mean for each kernel over each study
plot. Both small [11] and large kernel sizes [35] have yielded promising results for their
specific scenarios. For our case, using a smaller kernel size meant that the feature became
more susceptible to noise, while too large a value could lead to over-smoothing of the data
and loss of texture information. The GLCM was evaluated in eight directions (N, S, E, W,
N-E, N-W, S-E, S-W) for each kernel. A quantization level of 16 was used to evaluate the
GLCM mean for each kernel within a plot, after which the mean of GLCM means was taken
as the texture feature for each plot. The texture features of an image depend on the canopy
coverage of a plot [11,79], so we did not crop out the vegetation during the calculation.

Figure 2b is a plot of the mean of GLCM means over a particular plot at different
flight times. We note the dip in spectra at around 680 nm due to the contrast in reflectance
of vegetation and non-vegetation pixels at that wavelength band. Note that the contrast
at 480 nm was not high enough; thus, there was no significant dip, even though there
were absorption spectra in reflectance due to chlorophyll absorption. Vegetation shadow
pixels result in variation of reflectance within the green and the NIR region, leading to a
lower GLCM mean. We note that the relative uniformity of GLCM mean values for all the
wavelength regions for flight 1, compared to other flights, was due to a greater number of
soil pixels in the image.

In a study by Zheng et al. [11], textural measurements from individual wavelengths
did not exhibit a high predictive capability of rice AGB. The authors therefore proposed a
normalized difference texture index (NDTI). The texture feature extracted in this paper is
also the NDTI, as defined by Equation (3). Here, T1 and T2 are the means of GLCM means
at two different wavelengths. We also evaluated NDTI with each possible combination of
narrow-band texture wavelengths, as follows:

NDTI =
T1 − T2

T1 + T2
(3)

2.5. Model Evaluation and Feature Search

Our goal was to identify the pair (or pairs) of wavelength bands that produced the
most predictive NDRI and NDTI features, for an accurate and precise model for table beet
root yield. Due to low sample size, we performed leave-one-out cross-validation (LOOCV)
to evaluate our model [80]. Here, the dataset is divided into a number of subsets, which
equals the number of instances in that dataset. In each subset, all but one instance was
used to train models, while the omitted sample was used to test models. In our case, a
model with the same feature was trained on 17 occasions and tested on one occasion with
18 combinations. Our model evaluation parameters were the coefficient of determination R2

and root mean square error (RMSE). The LOOCV R2 and RMSE for a model were calculated
from these 18 unique occasion predictions.

We investigated the model performance for each flight individually, and the final
models for each flight were evaluated in multiple ways. Firstly, we noted the top 10 LOOCV
R2 features obtained from NDRI and NDTI. We also noted the models obtained using a
combination of one NDRI and one NDTI feature. Finally, we fed the top-10 NDRI and
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NDTI features into a random forward-selected stepwise linear regression to obtain models
that contained multiple features.

2.5.1. Single Feature Approach

To identify the wavelength bands that were best predictors of table beet root yield,
the NDRI and NDTI for each possible wavelength pair in the spectrum were fitted with
root yield in a simple linear regression (SLR). The predictive power from single features
was identified for two purposes: to narrow down the feature search space for a general
model and to evaluate the performance of a model that predicts root yield from just two
wavelength bands. Additionally, we also wanted to monitor the change in predictive
capabilities at each growth stage.

2.5.2. Double Feature Approach

We selected one feature from NDRI and one from NDTI and evaluated the model
performances. Each model formed from all possible dual feature combinations of the
top 10 NDRI and NDTI features was evaluated. Both feature extraction methods were
used, as each signifies different properties of an image. NDRI is a placeholder for spectral
characteristics, while NDTI provides information related to image texture. We selected one
index from each, as the goal of the final model was to select just four wavelength bands, to
ensure compatibility with inexpensive sensors.

Zheng et al. [11] showed that using spectral and textural measurements improved
their rice AGB prediction model. Furthermore, Zheng et al. [78] showed significant im-
provements in the estimation of leaf nitrogen concentration when using VIs combined with
NDTIs, compared to the indices alone. Yue et al. [79] also reported improved results when
using vegetation indices in combination with image textures.

2.5.3. Modified Stepwise Regression

Finally, to find the best model derived from NDTI and NDRI features during each
flight, stepwise regression offers a simple way to explore regression models over a large
feature space without exhaustively interrogating every possible combination. In order
to mitigate some of the concerns raised in the literature [81–84], we introduced some
additional procedures in the stepwise regression algorithm.

Smith [81] argues the probability of choosing an explanatory variable decreases if the
number of candidate variables is too large. Therefore, we restricted our procedure to pool
20 candidate variables. Grossman et al. [82] highlighted that the stepwise procedure features
depend on the samples in the dataset, so LOOCV p-values were chosen to mitigate this issue.
The LOOCV p-values are the mean of the p-values of a feature for each instance within
LOOCV. Simple forward selection of features also does not account for interdependencies
within the features [85], which can lead to the entry of redundant features into the final
model, thus inflating its performance [86]. Therefore, we performed backward elimination
after adding each new feature to discard all features with a p-value greater than 0.05.

In this process, the order of parameter entry affects the selection of features [83], while
the stepwise regression algorithm only accounts for the interaction of a particular set of
features at a fixed permutation [84]. The first feature for the stepwise regression algorithm
was thus randomly selected, and each new feature was randomly added to the algorithm.
The algorithm was repeated multiple times, ensuring that a broad range of sub-models
was evaluated. Finally, multiple sets of features were obtained that could lead to predicting
table beet root yield. Among the multiple models, we selected those exhibiting an R2

adj
value greater than 0.75 and the VIF for each feature as less than five. VIF is the variance
inflation factor, a measure of the degree of inter-correlation of one feature with the rest
of the features in a model [87]. A VIF greater than five shows high inter-correlation [88].
Models with features exhibiting the above criteria have the potential to be operational.
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For extraction, analysis and visualization, we used python 3.9.7 and the following
packages: numpy 1.21.4, matplotlib 3.5.0, scipy 1.7.3, scikit-learn 1.0.2, statsmodels 0.13.1,
geopandas 0.9.0, gdal 3.4.0, rasterio 1.2.10 and rioxarray 0.9.0.

3. Results

In this section we report all the LOOCV R2, RMSE and relevant models’ performance
parameters for each approach.

3.1. Single Features

The R2 values for each pair of narrow band wavelengths of NDRI and NDTI were
recorded and shown in Figure 3. The top 10 R2 values for each flight can be found in
Tables A1 and A2 in Appendix A.
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Figure 2a shows the changes to predictive narrow-band wavelengths for NDRI features.
The 760 nm and NIR (770–900 nm) features show predictive abilities during the first three
flights. The region of high R2 values shifts, but the NIR region remains most indicative
for the last two flights. For flights 3 and 4, we observe a high coefficient of determination
around the 450 nm and 650 nm regions. The top 10 R2 values and results are shown
in Table A1 in Appendix A. The top 10 R2 values for the first two flights were between
0.49–0.61. Flights 3 and 4 had more predictive features, ranging from 0.63–0.73, while the
top-10 R2 values of Flight 5 were all around 0.6. The most predictive features for all flights
appear primarily in the NIR region (750–900 nm).

The predictive regions for NDTI are sparsely distributed, as seen in Figure 3b. For
flight 1, the predictive features appear in the NIR pairs, with R2 values of around 0.4 and
0.5. With a maximum R2 of 0.36, the NDTI features of flight 2 perform poorly. There are
some relatively high R2 regions around the 500–700 nm wavelength pairs for flights 3 and 4.
Moreover, the features from flight 5 have a low predictive ability with table beet root
yield, with the top R2 ranging in the range 0.25–0.30. Table A2 in Appendix A lists the top
10 NDTI features.

3.2. Double Features

The top five models (in terms of R2 values) obtained from combinations of each feature
are reported in Table 2.

Table 2. The top five models obtained from one NDRI and one NDTI feature. ‘t’ represents the feature
obtained from NDTI, while ‘d’ represents that from NDRI.

Flight 1

Features R2 R2
adj RMSE (%) VIF

d [895.0, 792.6] t [908.3, 823.7] 0.77 0.74 16.13 (1.241, 1.241)
d [826.0, 765.9] t [805.9, 779.2] 0.76 0.73 16.23 (1.195, 1.195)
d [494.3, 485.4] t [908.3, 823.7] 0.76 0.73 16.32 (1.496, 1.496)
d [895.0, 765.9] t [908.3, 823.7] 0.75 0.72 16.66 (1.334, 1.334)
d [494.3, 485.4] t [797.0, 781.4] 0.75 0.72 16.73 (1.324, 1.324)

Flight 2

Features R2 R2
adj RMSE (%) VIF

d [897.2, 895.0] t [901.6, 897.2] 0.73 0.69 17.37 (1.281, 1.281)
d [801.5, 761.4] t [687.9, 656.8] 0.71 0.67 18.16 (1.103, 1.103)
d [899.4, 897.2] t [505.4, 496.5] 0.71 0.67 18.27 (1.118, 1.118)
d [899.4, 897.2] t [687.9, 654.6] 0.69 0.65 18.66 (1.264, 1.264)
d [803.7, 761.4] t [587.8, 583.3] 0.67 0.63 19.03 (1.097, 1.097)

Flight 3

Features R2 R2
adj RMSE (%) VIF

d [897.2, 788.1] t [469.8, 452.0] 0.82 0.80 14.23 (1.651, 1.651)
d [886.1, 790.3] t [817.1, 785.9] 0.81 0.79 14.54 (1.555, 1.555)
d [874.9, 788.1] t [469.8, 452.0] 0.81 0.78 14.72 (1.77, 1.77)
d [903.9, 897.2] t [469.8, 452.0] 0.80 0.78 14.97 (1.766, 1.766)
d [886.1, 790.3] t [469.8, 452.0] 0.79 0.76 15.32 (1.756, 1.756)

Flight 4

Features R2 R2
adj RMSE (%) VIF

d [895.0, 785.9] t [848.2, 765.9] 0.85 0.83 13.20 (1.198, 1.198)
d [895.0, 785.9] t [808.2, 765.9] 0.83 0.81 13.70 (1.226, 1.226)
d [895.0, 783.7] t [848.2, 765.9] 0.83 0.81 13.90 (1.252, 1.252)
d [895.0, 785.9] t [874.9, 763.6] 0.82 0.80 14.15 (1.341, 1.341)
d [895.0, 783.7] t [857.1, 792.6] 0.82 0.80 14.23 (1.264, 1.264)
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Table 2. Cont.

Flight 5

Features R2 R2
adj RMSE (%) VIF

d [892.7, 814.8] t [505.4, 496.5] 0.82 0.79 14.41 (1.108, 1.108)
d [883.8, 794.8] t [614.5, 607.8] 0.79 0.77 15.19 (1.178, 1.178)
d [910.5, 770.3] t [505.4, 496.5] 0.78 0.75 15.71 (1.146, 1.146)
d [886.1, 770.3] t [505.4, 496.5] 0.76 0.73 16.43 (1.186, 1.186)
d [883.8, 794.8] t [610.0, 607.8] 0.76 0.73 16.46 (1.694, 1.694)

Incorporating both NDRI and NDTI features increased the R2 values of the model for
all five flights. We also noted that each model’s VIF values are low, signifying the absence
of correlation between the features. The dual features had better-performing models for
flights 3 and 4 than the other flights. While the wavelength bands were different, there
were some frequently occurring features; for example, for flight 4, the NDRI features were
either 895 nm and 785.9 nm or 895 nm and 783.7 nm, while the NDTI features were around
850 nm and 760 nm. For flight 1, both NDRI and NDTI features were from wavelength
pairs in the NIR, except for one pair of blue wavelengths. For flight 2, the NDRI features
are from NIR pairs, but the NDTI features were at different wavelength pairs. For flight 3,
we again observed the high R2 for blue wavelength pairs. Finally, for flight 5, we observed
some texture features from blue and red pairs.

3.3. Multiple Features

Random stepwise regression with an alpha value of 0.05 was implemented. The
summary of obtained models are shown in Table 3. Most of the models identified had an
R2 value of greater than 0.80 and an RMSE of lower than 15.27% of the estimate, which is
equivalent to around 0.28 kg/m. The top-performing models for each flight had similar
R2 values, ranging from 0.85 to 0.90, with the best performing model occurring at flight
4, with an R2 of 0.90 and 10.81% (0.2 kg/m) RMSE. Flights 3 and 5, and 1 and 2 had
similar performances compared to each other, albeit each with their own unique set of
predictive features.

Table 3. Summary of results using multiple features. Random stepwise regression also generated
models already found in the double feature case we did not report those models in this table.

Flight 1

features R2 R2
adj RMSE (%) VIF p-values

['d [895.0, 792.6]', 't [797.0,
781.4]', 't [908.3, 823.7]', 't

[805.9, 779.2]']

0.85 0.81 12.93 [1.463, 1.632 2.136, 1.879] [0.004, 0.027 0.019, 0.042]

['t [797.0, 781.4]', 'd [895.0,
792.6]', 't [850.4, 743.6]', 't

[908.3, 823.7]']

0.84 0.79 13.59 [1.648, 1.387 1.944, 2.205] [0.043, 0.002 0.048, 0.026]

['t [797.0, 781.4]', 't [850.4,
785.9]', 't [908.3, 823.7]', 'd

[895.0, 792.6]']

0.83 0.78 13.74 [1.640, 1.959 1.938, 1.743] [0.021, 0.046 0.010, 0.019]

['d [494.3, 485.4]', 't [797.0,
781.4]', 't [908.3, 823.7]']

0.82 0.78 14.28 [1.589, 1.595 1.803] [0.003, 0.041, 0.012]
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Table 3. Cont.

Flight 2

Features R2 R2
adj RMSE (%) VIF p-values

['d [899.4, 897.2]', 't [505.4,
496.5]', 't [687.9, 656.8]', 't

[901.6, 897.2]']

0.85 0.81 12.93 [1.813, 1.219 1.361, 1.586] [0.006, 0.006 0.014, 0.019]

Flight 3

Features R2 R2
adj RMSE (%) VIF p-values

['d [618.9, 463.1]', 'd [886.1,
790.3]', 't [817.1, 785.9]']

0.87 0.85 11.85 [2.266, 1.839, 2.078] [0.011, 0.002, 0.020]

['t [817.1, 785.9]', 'd [886.1,
790.3]', 'd [903.9, 852.7]']

0.86 0.83 12.63 [2.070, 1.955, 2.457] [0.021, 0.004, 0.020]

['d [903.9, 852.7]', 'd [886.1,
790.3]', 't [469.8, 452.0]']

0.84 0.81 13.46 [2.405, 2.082, 2.289] [0.022, 0.008, 0.023]

['t [817.1, 785.9]', 'd [886.1,
832.6]', 'd [618.9, 463.1]']

0.84 0.80 13.45 [2.149, 2.044, 2.310] [0.038, 0.006, 0.019]

['d [886.1, 790.3]', 't [469.8,
452.0]', 'd [618.9, 463.1]']

0.83 0.80 13.69 [1.962, 2.379, 2.299] [0.004, 0.027, 0.033]

['t [469.8, 452.0]', 'd [886.1,
790.3]', 'd [892.7, 788.1]']

0.83 0.79 13.92 [2.026, 2.284, 2.293] [0.008, 0.024, 0.024]

['t [817.1, 785.9]', 'd [886.1,
790.3]', 't [469.8, 452.0]']

0.81 0.77 14.51 [2.276, 1.852, 2.569] [0.045, 0.003, 0.049]

['t [817.1, 785.9]', 'd [886.1,
832.6]', 'd [874.9, 788.1]']

0.81 0.77 14.60 [2.074, 2.370, 2.700] [0.032, 0.022, 0.037]

Flight 4

Features R2 R2
adj RMSE (%) VIF p-values

['t [643.4, 639.0]', 't [848.2,
765.9]', 'd [895.0, 783.7]']

0.90 0.87 10.81 [1.666, 1.332, 1.672] [0.007, 0.001, 0.000]

['d [872.7, 799.2]', 't [643.4,
639.0]', 't [808.2, 765.9]']

0.85 0.81 13.15 [1.951, 1.603, 1.624] [0.003, 0.008, 0.025]

['t [643.4, 639.0]', 't [808.2,
765.9]', 'd [895.0, 783.7]']

0.85 0.81 13.20 [1.676, 1.413, 1.713] [0.012, 0.003, 0.001]

Flight 5

Features R2 R2
adj RMSE (%) VIF p-values

['d [892.7, 814.8]', 't [505.4,
496.5]', 'd [912.8, 770.3]']

0.88 0.85 11.80 [1.680, 1.446, 2.184] [0.000, 0.015, 0.016]

['d [910.5, 770.3]', 't [505.4,
496.5]', 'd [892.7, 814.8]']

0.87 0.84 12.14 [2.929, 1.148, 2.833] [0.036, 0.002, 0.009]

['d [926.1, 823.7]',
'd [883.8, 794.8]']

0.81 0.78 14.60 [1.975, 1.975] [0.004, 0.004]

['d [883.8, 794.8]',
'd [926.1, 777.0]']

0.80 0.77 15.08 [1.884, 1.884] [0.003, 0.008]

['d [892.7, 814.8]',
'd [912.8, 770.3]']

0.79 0.77 15.27 [1.674, 1.674] [0.001, 0.003]

We identified select operational models as defined by our previously mentioned
performance criteria (R2

adj > 0.75 and VIF < 5) for all flights. However, we note the scarcity
of models for flight 2 that meet this performance criteria. We emphasize that for the
conditions we set to filter our models, flights 1 and 2 contained four features, while the rest
of the top-performing models were obtained from just three features. For flight 1, most of
the models are focused in the NIR region. For the fifth flight, however, there was a blue
texture feature, while for the fourth flight, a red feature was present. We observed red
and blue NDRI pairs, with NIR texture feature pairs, for the third flight. The fit of the
best-performing models for each flight is shown in Figure 4.
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Figure 4. Plot of observed vs. predicted yield for the best performing model for each flight. (a) flight 1,
(b) flight 2, (c) flight 3, (d) flight 4 and (e) flight 5.

The observed vs. predicted plots in Figure 4 gives us an idea of the range of table
beet root yield values to evaluate the limitations of the model. For example, flight 1
overestimates values between 1.2 kg/m and 1.45 kg/m. Both flight 1 and flight 2 have a
more significant number of outlier values, and the data points appear to be further apart
from the 1:1 line, thereby signifying the increase in error variance. For flight 3, there is a
trend for the model to overestimate between table beet root yields of 1.2–1.6 kg/m, while
conversely, the model underestimates in the range 2.2–2.5 kg/m. The model from flight 4
shows underestimation of table beet root yield, especially in the range 2.3–2.7 kg/m.

3.4. Extrapolating Yield Modeling Results to the Field Scale

Yield maps are helpful tools for farmers to plan and make logistic decisions, and
here we apply our model to provide insight into one such yield map. Figure 5 shows the
predicted table beet root yield for plots in the northern region of the field. Each prediction
was made by training the best-performing model on all 18 plots. In the plot, some boxes
were empty, since the predicted root yields from the model were outside the labeled range.
This occurred as some of the images within the plot appeared blurred in the mosaic, leading
to an anomalous prediction. We observed similar regions or locally specific results, based
on similar colors around the same plot. However, there was also some variability in growth
factors across the field and across the growing season, which is understandable, since soil
variability came into play, and the time-specific model performances, respectively, were
different. The projection of the mosaic was not always uniform, and there were also missing
crop locations in the plot. This resulted in some of the plots having anomalous results,
which are shown as empty blocks in the image. We notice that, specifically for flights 3 and
4, the predicted table beet root yield is (spatially) similarly distributed.
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Figure 5. An example of field-level estimated root yield using the best-performing model for
each flight.

Finally, by analyzing observed vs. predicted plots in Figure 4, we observe a higher
error variability for our models, especially for flights 1, 2, and 5. Thus, we do not see a
similar trend of predicted values that we observe for flights 3 and 4. As we do not possess
the actual table beet root yield of the plot; i.e., it is difficult to verify the entire map’s
accuracy, but we assume at least some validity in the table beet root yield map, since we
hedged against the overall performance of flight 3 (growth stage).

4. Discussion
4.1. Significance of Obtained Features

An imaging system’s limitations must be considered before analyzing the prominent
wavelength bands and the spectra for any given application. A number of critical factors
include the band centers and the FWHM of the sensors in the imager, as well as flight
shifts in airborne hyperspectral imaging systems due to vibrations [89]. These effects are
further exacerbated by SMILE and keystone effects of the sensor [90], which lead to spectral
absorption features appearing at slightly shifted locations. Furthermore, our sensor has
a FWHM of around 6 nm, which is relatively broad compared to our spectral resolution
of 2.2 nm [55]. These factors led to our observed absorption peaks appearing as relatively
broad spikes, as seen in Figure 2a. We mention this as background to the discussion of the
specific wavelength features and pairs, especially insofar as their specificity of location and
combination is concerned.

The wavelength bands of each feature for the best-performing model (in terms of
R2) of each flight are shown in Figure 6. We marked oxygen absorption at 760 nm and
water vapor absorption at 820 nm and 910 nm [19] in the plot. Most of the spectral/texture
features for all flights were located around the 900 and 800 nm pairs, attributable to
the broad spectral spikes caused by oxygen and water absorption features. This has
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potential physiological implications. Table beet roots primarily consist of water [91]. The
amount of water in the foliage could be an indication of the relative hydration of the roots
and thus indicative of root weight. We contend that this is a type of normalized water
absorption feature.
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There also are feature pairs around 650 nm and 500 nm, even if only one feature
appears around this region for the best-performing models for NDRI. However, from the
heat map in Figure 3, we noted the significance of this region for predicting table beet root
yield. Strong chlorophyll a and b absorptions can be found at around 440 nm and 680 nm,
and 460 and 635 nm, respectively, while carotenoids have been shown to express as an
absorption feature at around 470 nm [19,92].

Additionally, similar wavelength regions have been shown to have utility for the devel-
opment of a broad range of crop physiological models. Thenkabail et al. [76] demonstrated
the importance of 800 nm and 900 nm wavelength pairs, which significantly correlated
with the wet biomass for soybean and cotton crops. The 672 nm and 448 nm combination
also has been shown to be an indicator of evapotranspiration by Marshall et al. [75]. Finally,
900–700 nm and 750–400 nm wavelength pairs are predictive of AGB and LAI for paddy
rice [93].

4.2. Model Performance

Several different models were developed to identify possible wavelength combinations
that could lead to effective scalable solutions for the prediction of table beet root yield at
each growth stage. However, we are aware of the relatively small sample size on which
we performed our analysis. To mitigate the small number of samples, we evaluated our
models by LOOCV. All our reported models arguably rely on a limited number of predictive
features, thereby avoiding the challenge of over-fitting in the context of a limited sample set.
Hyperspectral indices are highly susceptible to noise [58], so the top-reported wavelength
indices may not be extrapolated to other locations and times. However, a broad range of
models with LOOCV R2 greater than 0.80 and RMSE of less than 15% for table beet root
crops have been documented in this study.

In our previous study [53], the best performing model had an R2 of 0.89 and RMSE
of 2.5 kg at the canopy closing stage using VDVI (Visible Band Difference Vegetation
Index) and canopy area obtained from multispectral imagery. Here, we obtained similar
and sometimes better results for each growth stage. The R2 for predicting carrot yield by
Wei et al. [94] using satellite imagery was around 0.80. The best performing model for
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predicting potato yield for Li et al. [49] had an R2 of 0.81, using spectral indices collected
from UAS-based HSI. Therefore, our results outperform those analogous studies. However,
we are aware of the sample size limitation of our study, as we only used 18 plots to establish
our model. We therefore recommend that our models be verified with table beets grown
at different geographic locations and across years, with a larger dataset encompassing
multiple fields.

Although the top-performing models for each flight exhibit similar performances, the
best performing model was from flight 4. In contrast, both flights 3 and 4 have the largest
number of high performing models (12 and eight models with R2 value greater than 0.80,
respectively). Flights 3 and 4 were performed within five days of each other, and as such,
they exhibit similar feature sets, as well as model performances.

All the feature sets from each flight (as reported in Tables 2 and 3) were assessed
on the remaining four flights’ data, and their LOOCV R2 values are shown in Figure 7.
Only the top five model performances across all flights are shown. From these plots, the
top-performing feature for one flight does not necessarily perform well on other flight data,
meaning the features’ foresight depended on the day the data was captured. Although the
R2 values for flight 3 is relatively high with feature sets from all flights. This signifies the
presence of abundant and broader wavelength features that potentially exhibit table beet
root yield predictive ability during this period.
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Moreover, the features obtained from flight 5 show relatively high coefficient of
determinations for all flights, with R2 values ranging from 0.4–0.5 for flights 3 and 4, and
0.1–0.2 for flights 1 and 2. The features are close to the best-performing features of flights
3 and 4, leading to relatively higher R2 scores. In addition, some of the features were
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similar to the features of flights 1 and 2. However, their R2 values are lower, signifying that
during the earlier stages of growth, the predictive ability was more in tune with the specific
narrow-band indices, while as the crop matures and approaches harvest, a broader range
of indices shows prognostic capability.

5. Conclusions

The goals of this study were to assess the utility of HSI to accurately/precisely model
beet root yield and to identify the wavelength indices that exhibit a predictive capability
for beet root weight. We developed a varied selection of wavelength indices at various
growth stages, which farmers could utilize to design a system for predicting table beet root
yield with parameters best suited to their means.

The potency of predicting root yield from NIR pairs, especially for spectral features,
is highlighted in this study. These results are promising for developing cost-effective and
operational sensing platforms, as most of the spectral/texture features were located in
the spectral range that can be detected by relatively cheap silicon (Si) detector material.
Furthermore, the addition of texture features showed significant improvement to our
model, showing that HSI texture features could serve as an important tool for analysis. We
explored its effectiveness with some specific hyperparameters for texture feature extraction.
However, variation of hyperparameters leads to varying levels of performance, which are
also dependent on the growth stage of a plant [35,78]. Therefore, this is a potential area
for future research, i.e., to find the hyperparameters suitable for a particular study at a
particular growth stage.

The flight that was performed 21 days prior to harvest (or equivalently, 56 days after
planting) exhibited a more significant number of features that led to good-performing
(LOOCV R2 > 0.80) models. Additionally, we noted that the features identified from other
flights showed significant fit (R2 around 0.4) with data obtained from this flight. While
flight 4 (which was performed five days after) had the best-performing model, with an
R2 of 0.90 and a 10.81% RMSE. We thus surmise, with caution, that the time period of
roughly 16 to 21 days from harvest (Rosette growth stage) is ideally the best time to fly
for predicting table beet root yield. However, we also acknowledge the results to depend
on the weather and growing condition of the 2021 harvest at Geneva, New York, USA.
As such, the results are likely to vary for a different year and at different geographic
locations. We thus recommend that future studies (i) expand the number of field samples,
(ii) assess the efficacy of modeling for different regions and even different beet cultivars,
and (iii) consider the inclusion of structure-related features, such as those derived from
light detection and ranging (LiDAR) and structure-from-motion techniques. Nevertheless,
we were encouraged by our models’performance in the variability in yield explained (R2)
and the relatively low RMSE values.
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Appendix A. Top Features from Each Feature Selection Method

Table A1. Top 10 NDRI features.

Flight 1 Flight 2 Flight 3 Flight 4 Flight 5

wavelength
pair (nm) R2 wavelength

pair (nm) R2 wavelength
pair (nm) R2 wavelength

pair (nm) R2 wavelength
pair (nm) R2

[830.4, 765.9] 0.61 [897.2, 895.0] 0.61 [883.8, 832.6] 0.73 [872.7, 799.2] 0.70 [834.9, 770.3] 0.68
[494.3, 485.4] 0.60 [899.4, 897.2] 0.59 [903.9, 897.2] 0.70 [881.6, 808.2] 0.67 [892.7, 814.8] 0.67
[895.0, 765.9] 0.54 [801.5, 757.0] 0.54 [903.9, 852.7] 0.68 [895.0, 785.9] 0.66 [883.8, 794.8] 0.66
[810.4, 736.9] 0.53 [897.2, 890.5] 0.54 [874.9, 788.1] 0.68 [895.0, 783.7] 0.66 [926.1, 823.7] 0.65
[797.0 765.9] 0.51 [801.5, 761.4] 0.52 [618.9, 463.1] 0.67 [888.3, 790.3] 0.65 [895.0, 823.7] 0.65
[785.9, 765.9] 0.50 [897.2, 892.7] 0.51 [886.1, 832.6] 0.67 [888.3, 832.6] 0.64 [886.1, 770.3] 0.64
[826.0, 765.9] 0.50 [832.6, 812.6] 0.51 [897.2, 788.1] 0.67 [877.2, 785.9] 0.63 [910.5, 770.3] 0.63
[821.5, 759.2] 0.49 [834.9, 812.6] 0.50 [892.7, 788.1] 0.66 [846.0, 785.9] 0.63 [912.8, 770.3] 0.63
[765.9, 734.7] 0.49 [897.2, 826.0] 0.49 [485.4, 454.2] 0.66 [892.7, 808.2] 0.63 [926.1, 777.0] 0.63
[895.0, 792.6] 0.49 [803.7, 761.4] 0.49 [886.1, 790.3] 0.66 [921.7, 834.9] 0.63 [923.9, 821.5] 0.61

Table A2. Top 10 NDTI features.

Flight 1 Flight 2 Flight 3 Flight 4 Flight 5

wavelength
pair (nm) R2 wavelength

pair (nm) R2 wavelength
pair (nm) R2 wavelength

pair (nm) R2 wavelength
pair (nm) R2

[850.4, 781.4] 0.65 [901.6, 897.2] 0.36 [469.8, 452.0] 0.63 [558.8, 541.0] 0.50 [610.0, 607.8] 0.52
[805.9, 781.4] 0.59 [590.0, 581.1] 0.33 [701.3, 612.3] 0.59 [874.9, 763.6] 0.49 [681.3, 679.0] 0.33
[908.3, 823.7] 0.57 [587.8, 583.3] 0.33 [890.5, 765.9] 0.58 [643.4, 639.0] 0.49 [618.9, 607.8] 0.29
[850.4, 785.9] 0.52 [687.9, 654.6] 0.32 [817.1, 785.9] 0.58 [808.2, 765.9] 0.48 [478.7, 469.8] 0.29
[850.4, 748.0] 0.51 [590.0, 583.3] 0.31 [699.1, 612.3] 0.56 [870.5, 763.6] 0.47 [614.5, 607.8] 0.29
[850.4, 743.6] 0.49 [590.0, 576.7] 0.31 [590.0, 576.7] 0.53 [874.9, 777.0] 0.47 [505.4, 496.5] 0.29
[805.9, 779.2] 0.47 [590.0, 585.6] 0.30 [701.3, 607.8] 0.53 [874.9, 765.9] 0.46 [420.8, 414.2] 0.28
[805.9, 748.0] 0.47 [687.9, 656.8] 0.28 [890.5, 768.1] 0.53 [848.2, 765.9] 0.45 [505.4, 487.6] 0.26
[850.4, 759.2] 0.46 [505.4, 496.5] 0.27 [518.8, 507.6] 0.52 [857.1, 792.6] 0.44 [681.3, 674.6] 0.26
[797.0, 781.4] 0.44 [912.8, 910.5] 0.26 [701.3, 603.4] 0.51 [874.9, 812.6] 0.43 [708.0, 398.6] 0.25
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