
Expert Systems with Applications 42 (2015) 2785–2797
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
Efficient agglomerative hierarchical clustering
http://dx.doi.org/10.1016/j.eswa.2014.09.054
0957-4174/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +61 399252169; fax: +61 396621617.
E-mail addresses: Athman.Bouguettaya@rmit.edu.au (A. Bouguettaya), qi.yu@rit.

edu (Q. Yu), xumin.liu@rit.edu (X. Liu), Xiangmin.zhou@vu.edu.au (X. Zhou), andy.
song@rmit.edu.au (A. Song).
Athman Bouguettaya a,⇑, Qi Yu b, Xumin Liu b, Xiangmin Zhou c, Andy Song a

a RMIT University, Australia
b Rochester Institute of Technology, USA
c Victoria University, Australia

a r t i c l e i n f o a b s t r a c t
Article history:
Available online 22 October 2014

Keywords:
Clustering analysis
Hybrid clustering
Data mining
Data distribution
Coefficient of correlation
Hierarchical clustering is of great importance in data analytics especially because of the exponential
growth of real-world data. Often these data are unlabelled and there is little prior domain knowledge
available. One challenge in handling these huge data collections is the computational cost. In this paper,
we aim to improve the efficiency by introducing a set of methods of agglomerative hierarchical cluster-
ing. Instead of building cluster hierarchies based on raw data points, our approach builds a hierarchy
based on a group of centroids. These centroids represent a group of adjacent points in the data space.
By this approach, feature extraction or dimensionality reduction is not required. To evaluate our
approach, we have conducted a comprehensive experimental study. We tested the approach with
different clustering methods (i.e., UPGMA and SLINK), data distributions, (i.e., normal and uniform),
and distance measures (i.e., Euclidean and Canberra). The experimental results indicate that, using the
centroid based approach, computational cost can be significantly reduced without compromising the
clustering performance. The performance of this approach is relatively consistent regardless the variation
of the settings, i.e., clustering methods, data distributions, and distance measures.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Clustering is an important means of data analytics in real-world
scenarios because manual tagging of the data is usually expensive.
Furthermore prior knowledge required to facilitate manual tagging
is often unavailable or insufficient. Under such circumstances
clustering is a more suitable option over supervised learning
approaches, such as classification and regression.

Efficient techniques for data clustering has been studied for
decades due to its significant implication in real-world applications
where the amount of data are often very large and the accumula-
tion of data is often accelerating (Jain, Murty, & Flynn, 1999;
Romesburg, 1990). A clustering method which requires less com-
putational cost can be beneficial in general data mining and knowl-
edge discovery, as well as in specific domains e.g. bio-informatics,
web usage monitoring and social network analysis. Due to the
widespread of web applications, mobile devices and network of
sensors, the volume of data to be analyzed grows much faster than
computational power, especially in recent years. This flood of data
makes efficiency a high priority in developing clustering methods.
In this study we address the efficiency issue of hierarchical clus-
tering which is one of the main stream clustering methods as it is
generally applicable to most types of data. In comparison with
partitional clustering algorithms such as K-means, hierarchical
approaches have higher cost, with a complexity of OðN2logNÞ, but
they do not require any predefined parameter hence are more suit-
able for handling real-world data where finding a suitable set of
parameters can be tricky.

Hierarchical clustering can go both ways, aggregating from indi-
vidual points to the most high-level cluster or dividing from a top
cluster to atomic data objects. Our focus is the bottom-up approach
which is known as the agglomerative approach, because computa-
tional cost can be reduced if the bottom-up process starts from
somewhere in the middle of the hierarchy and the lower part of
the hierarchy is built by a less expensive method such as partition-
al clustering. This idea would not work well on the top-down
approach which is known as divisive hierarchical clustering
because it is notorious for its high cost, Oð2NÞ, and verifying middle
level sub-clusters by individual data points would still be
expensive.

It is possible to use a hierarchical approach to generate middle-
level sub-clusters then apply partitional algorithms on these sub-
clusters. However predefined parameters like K still need to be
determined. Another possible way to improve efficiency in hierar-
chical clustering is to perform feature extraction or selection,

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2014.09.054&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2014.09.054
mailto:Athman.Bouguettaya@rmit.edu.au
mailto:qi.yu@rit.edu
mailto:qi.yu@rit.edu
mailto:xumin.liu@rit.edu
mailto:Xiangmin.zhou@vu.edu.au
mailto:andy.song@rmit.edu.au
mailto:andy.song@rmit.edu.au
http://dx.doi.org/10.1016/j.eswa.2014.09.054
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


2786 A. Bouguettaya et al. / Expert Systems with Applications 42 (2015) 2785–2797
which may reduce data dimensionality. However that process
often requires domain knowledge of the data. It also makes the
clustering outcomes dependent on the performance of the feature
extraction or selection algorithms.

In this paper we present an efficient agglomerative hierarchical
method which does not require feature extraction or selection. The
main goals of this study are:

1. Presenting a methodology of combining agglomerative
hierarchical clustering and partitional clustering to reduce the
overall computational cost. By this method the number of
output clusters needs not to be determined beforehand.

2. Studying the behaviors of our methods with different
distributions.

3. Evaluating the performance of our methods based on the
coefficients of correlation.

The paper is organized as follows. In Section 2, we briefly dis-
cuss the related works. In Section 3, we describe the proposed
methodology with associated approaches. In Section 4 the datasets
used in this study are described. Section 5 shows the experimental
settings and the results. The further discussion on the results is
presented in Section 6. Section 7 concludes this study with a brief
outlook for further studies.

2. Related work

We review some representative clustering analysis techniques
in this section and highlight their difference with the proposed
approach. We categorize existing approaches into three major cat-
egories: partitional, hierarchical, and hybrid clustering, to achieve
a more focused discussion and comparison. We also review some
important applications of clustering to demonstrate its importance
in data-intensive processing environments (Altingövde, Demir,
Can, & Ulusoy, 2008; Hruschka, Campello, Freitas, & de Leon F. de
Carvalho, 2009; Jacinth Salome & Suresh, 2012; Jain et al., 1999;
Lee, Han, & Whang, 2007; Lin, Liu, & Chen, 2005; Liu & Yu, 2005;
Liu, Li, Sim, & Wong, 2007; Lee, Han, Li, & Gonzalez, 2008;
Ordonez & Omiecinski, 2004; Pan, Zhang, & Wang, 2008; Rokach,
2010; Xu & Wunsch, 2010; Zhou et al., 2009).

2.1. Hierarchical clustering

A hierarchical algorithm yields a dendrogram representing the
nested grouping of patterns and similarity levels at which group-
ings change (Jain et al., 1999). The clustering process is performed
by merging the most similar patterns in the cluster set to form a
bigger one. In Bouguettaya (1996) and Bouguettaya, Qi, Park, and
Delis (2002), Bouguettaya et al. investigated the different hierar-
chical clustering algorithms, including UPGMA, WARDS, SLINK,
CLINK, etc, and studied the behavior and stability of these algo-
rithms on low-dimensional and high-dimensional data respec-
tively. Hierarchical clustering approaches produce clusters of
higher quality. However, these approaches suffer from high time
cost. The efficiency of hierarchical algorithms can be improved
with the support of index structures (Zhang, Ramakrishnan, &
Livny, 1996). In Zhang et al. (1996), ‘‘Balancing Iterative Reducing
and Clustering using Hierarchies’’ (BIRCH) has been proposed for
minimizing the running time of clustering. BIRCH incrementally
clusters very large datasets, whose sizes are much greater than
the amount of available memory. Given a large dataset, the cluster-
ing process is performed by constructing a height-balanced tree,
called CF tree. The algorithm continuously parses the dataset and
updates the CF tree until the final result is achieved. BIRCH
algorithm adopts the notion of clustering features to capture the
information of a cluster. The clusters that are built so far by the
algorithm are organized into the CF tree. The leaf node of the CF
tree is a sub-cluster instead of a single data point. Therefore, CF
tree is a concise representation of the original dataset and can fit
into the memory. However, different from the proposed approach,
BIRCH adopts the centroid method with fixed order of the points,
which may affect the behavior of clustering results.

In recent years, evolutionary computation has been introduced
into clustering. As a kind of stochastic search methods, it can
often be quite effective in finding optimal solutions. However the
efficient aspect is rather an issue as an evolutionary process is
time-consuming (Wu, Hu, Maybank, Zhu, & Li, 2012). To speed up
a hierarchical agglomerative clustering process, GPU can certainly
be utilized (Shalom & Dash, 2013). This study does not involve
GPU although the proposed method can include GPU to further
enhance the execution time.

2.2. Partitional clustering

In contrast to the hierarchical clustering, a partitional clustering
algorithm obtains a flat partition of the dataset which optimizes a
predefined criterion function. The most widely used partitional
clustering algorithm is K-means clustering, which repeatedly
assigns each object to its closest cluster center and computes the
new cluster centers accordingly until the predefined criterion is
met. Based on how the distance between data points is computed,
various partitional clustering algorithms have been developed and
representative ones include spectral clustering (Luxburg, 2007; Ng,
Jordan, & Weiss, 2001), graph-partitioning based (Dhillon, Guan, &
Kulis, 2004), and non-negative matrix factorization based
approaches (Li & Ding, 2006). Comparing with K-means clustering,
these algorithms usually generate clusters of better quality.
However, these algorithms are more computationally involved,
requiring performing eigendecomposition or repetitive matrix
multiplication, making them not scalable to very large datasets.
Mixture model or other density based clustering algorithms output
soft cluster memberships, allowing each data point to be associ-
ated with multiple clusters with different probabilities. Compared
with the proposed approach and hierarchical clustering in general,
partitional clustering algorithms suffer two major limitations. First,
their performance heavily relies on pre-defined parameters,
especially the number of clusters, so the quality of data clusters
can not be guaranteed. Second, the resultant clusters have a flat
structure instead of hierarchical structure that captured much
richer relationship among data points. A hierarchical structure
offer a more natural way to organize many real-world objects
(e.g., documents and webpages) and facilitate human users to
browse the data.

2.3. Hybrid clustering

Hybrid data clustering combines the hierarchical and partitional
methods to obtain the good quality of the former and the efficiency
of the latter. Different hybrid data clustering algorithms have been
proposed (Guha, Rastogi, & Shim, 1998; Lin & Chen, 2005;
Wattanachon, Suksawatchon, & Lursinsap, 2009). In Guha et al.
(1998), a hybrid clustering algorithm called CURE was proposed
to effectively identify the arbitrarily shaped clusters. Given a large
dataset, CURE draws a set of data samples from the whole dataset
by random sampling. The data samples are grouped as several
partitions and those in each partition are partially clustered. The
outliers are then removed from the dataset. The final clusters are
obtained by further clustering over the partial clusters produced
in the previous step. CURE is scalable to large datasets with a linear
time complexity. However, different from the proposed approach, it



A. Bouguettaya et al. / Expert Systems with Applications 42 (2015) 2785–2797 2787
still requires the user-specified parameter values including the
number of clusters and the shrinking factor, which may affect the
quality of clusters. In Lin and Chen (2005) a Cohesion-based Self-
Merging (CSM) clustering algorithm is proposed. CSM adopts a
new similarity measure, referred to as cohesion, to calculate the
distance between clusters. Cohesion is defined based on the merg-
ing inclination of two clusters according to the existence of a shared
data point. Since the merging inclination should not be determined
by only a few points, cohesion collectively considers all the data
points in the two clusters to be merged. This makes the cohesion
measure robust to the existence of outliers. By using cohesion,
CSM effectively combines the features of partitional and hierarchi-
cal clustering methods. In the first phase, it partitions the original
data space into small clusters using k-means. Then the obtained
small clusters are merged together using the cohesion similarity
measure in a hierarchical manner. Experimental studies demon-
strate that CSM excels at both clustering accuracy and execution
time. However, since CSM requires users to specify the number of
sub-clusters expected in the data partition stage and the number
of final clusters, it implies that suitable parameter values need to
be supplied according to the domain knowledge of a particular
database. In contrast, the proposed approach is domain indepen-
dent. The Self-Partition and Self-Merging (SPSM) algorithm also
tried to reduce the effect of user-specified parameters by employing
a recursive data partition processing (Wattanachon et al., 2009).
The sub-clusters are produced by recursively dividing the dataset
into four partitions. However, it still suffers from the negative effect
of dividing a single cluster into different parts or grouping data
pointers of different categories into one cluster. This is caused by
the pre-defined number (i.e., four) of sub-clusters for each parti-
tioning step. In Cheng, Kannan, Vempala, and Wang (2005), authors
proposed to combine a divisive strategy and an agglomerative strat-
egy. Both the divisive and agglomerative components use a kind of
hierarchical algorithms, thus this method does not take advantage
of the benefits from partitional clustering as in the proposed
approach.

2.4. Important applications

The main purpose of using data clustering techniques is to
improve the performance of data access by summarizing the data
objects into groups. Often a group of clustering methods or a com-
bination of clustering with other methods works well. In Ordonez
and Omiecinski (2004), Ordonez et al. proposed to integrate clus-
tering with a relational DBMS for allowing K-means algorithm to
cluster large data sets inside a relational database management
system. Unlike the standard K-means approach that manages the
input data and clustering results in memory, all the data are stored
in disk. The performance of clustering is improved by statistics
based initialization of centroids and achieved fast convergence.
In Lee et al. (2007), a partition-and-group framework was proposed
to discover common sub-trajectories from a trajectory database
using trajectory-based clustering which is combined with a pro-
posed region-based clustering in Lee et al. (2008). This region-
based clustering discovers the regions having trajectories of one
major type. The trajectory-based clustering exploits the move pat-
terns of trajectories based on their low-level features, while the
region-based clustering utilizes more general features without
considering particular move patterns. Both the efficiency and accu-
racy could be improved due to the collaboration between these
two different clustering methods. In Altingövde et al. (2008), a
cluster-skipping inverted file is proposed based on the partitional
clustering for efficient retrieval of documents. Besides the general
document information, the cluster membership and centroid infor-
mation are stored in the inverted file as well. Clustering techniques
have been applied to analysis of microarray datasets (Pan et al.,
2008; Zhao et al., 2008). For example, Pan et al. proposed to use
sampling-based matrix decomposition for fast co-clustering of
microarray data (Pan et al., 2008). Zhao et al. proposed to identify
co-regulated gene clusters by a new tree-based clustering algo-
rithm (Zhao et al., 2008). Subspace based clustering has been pro-
posed to overcome the dimensionality curse of high dimensional
data (Parsons, Haque, & Liu, 2004). In Liu et al. (2007), a dis-
tance-based clustering model called nCluster was proposed to
identify the significant clusters by a flexible dimension partition
approach which allows the overlapping between different bins of
an attribute. In Zhou et al. (2009), an optimized visual dictionary
is proposed which is established on the subspace-based clustering
for effective and efficient video retrieval. The high-quality clusters
are obtained by first finding an optimal subspace combination
which produces the maximal discrimination power, and then per-
forming the recursive K-means algorithm over each dominant sub-
space. Consequently the high accuracy of video retrieval is
preserved. This work is based on the above studies as we investi-
gate the behavior and quality of hybrid clustering technique for
large databases based on hierarchical clustering and partitional
clustering from a broad view of point. We propose a set of hybrid
data clustering solutions which can be a basis of clustering based
applications.
3. Methodology

In this section, we will describe the key elements for designing
the clustering techniques and conducting the experiments. The
parameters that will be used in this analysis include the measure
of resemblance, clustering methods, statistical distribution, and coeffi-
cients of correlation. Other related concepts are types of data (quan-
titative vs. qualitative) and normalization. In what follows, we
overview these criteria as related to the proposed study.
3.1. Overview

Our approach, referred to as KnA, integrates K-means and
Agglomerative approaches, when generating the clustering hierar-
chy. The process first applies K-means to the individual data
objects and generates k clusters, called as middle-level clusters.
Each cluster is then represented by its centroid. The clustering pro-
cess then applies agglomerative clustering approaches, such as Sin-
gle Linkage method (SLINK) and Group Average Linkage (UPGMA),
on those centroids, to build the final clustering hierarchy. The dis-
tance between two middle-level clusters are measured as the dis-
tances between their centroids.

We will evaluate the performance of our approach and compare
it to the traditional agglomerative clustering approaches where the
step of applying K-means clustering is skipped, i.e., the hierarchy is
directly build on the original data objects. We will compare these
two methods in terms of effectiveness, i.e., the accuracy of the clus-
tering result, and efficiency, i.e., the CPU time of the entire cluster-
ing process. We believe that, if the centroids-based method
produces a hierarchy highly correlated to the hierarchy produced
using individual points, then it is more preferred as it always has
the better efficiency than the traditional ones.
3.2. Distance measure

Measuring distance between data objects is the foundation of
clustering algorithms since all of these algorithms are built on
proximity or similarity between data objects. Two common dis-
tance measures are used here, Euclidean Distance and Canberra
Distance.



2788 A. Bouguettaya et al. / Expert Systems with Applications 42 (2015) 2785–2797
� Euclidean Distance, ejk,
ejk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðXij � XikÞ2
vuut ; 0 < ejk <1
� Canberra Distance, cjk,
cjk ¼ ð1=nÞ
Xn

i¼1

jXij � Xikj
ðXij þ XikÞ

� �
; 0 6 cjk 6 1

where j and k are two objects, n is the number of attributes
available in the data objects, Xij and Xik are the values of the ith
attribute of objects j and k, respectively.

Both distance measures are sensitive to additive, mirror image,
and proportional translations. We should note that for Canberra
coefficient to be defined, all denominators should be non-zero. This
means that the coefficient is not defined where two objects both
have zero values for the same attribute. Similar to measures like
Bray-Curtis, Average Euclidean, and Cosine Similarity, these two
types of distance are mainly used for quantitative attributes. For
qualitative attributes, there are more suitable methods defined,
among which are the Jaccard, Sorenson, and Hamann coefficients
(Romesburg, 1990).

3.3. Partitional clustering: K-means

K-means is the most well-known partitional clustering algo-
rithm. The output of this algorithm is a flat structure of clusters.
The main steps are:

1. Selecting a few centroid points randomly.
2. Assigning each data point to the closest centroid.
3. Updating centroids by calculating central points of these newly

formed clusters.
4. Repeating the previous two steps until no object is resigned to

another cluster.

The K-means clustering is advantageous in efficiency as its com-
putational complexity is only linear to sample size N and number
of clusters K;OðNKÞ. How does the performance of K-means
depend on the initial choice of K? For many data it is difficult to
determine the optimal value especially when domain knowledge
is absent or inadequate.

3.4. Agglomerative hierarchical clustering

There are a few possible ways to perform agglomerative hierar-
chical clustering here. However they generally follow the following
major steps:

1. Calculating the proximity matrix for the initial clusters which
are the output from the above K-means process.

2. Searching for the minimal distance in the matrix.
3. Combining the two clusters with the minimal distance.
4. Updating the proximity matrix by calculating the distances

between the new cluster with the other clusters
5. Repeating the previous three steps if more than one cluster

remains.

The complexity of such a process is at least OðN2Þ, and may go
up to OðN2logNÞ. There are mainly two approaches of agglomera-
tive clustering used in our methodology, Unweighted Pair-Group
Method of Average (UPGMA) and Single Linkage (SLINK). In addi-
tional Unweighted Pair-Group Method of Centroids (UPGMC) is
also used in our extended experiments.
UPGMA: The average distances between all pairs of objects in
two clusters are calculated. If cluster X has nX objects, and clus-
ter Y has nY objects, the distance between clusters X and Y will
be calculated as the average of all distances (i.e., nX � nY dis-
tances) from xi to yj, where xi is an object in X and yj is an object
in Y. The distances between all pairs of clusters are calculated.
The two clusters with minimum distance are then merged. This
can be repeated until all clusters merge into one. The distance
between two clusters is calculated as:

DX;Y ¼
P
Dx;y

nX � nY

where X and Y are the two clusters, nX and nY are the number of
objects in clusters X and Y, respectively, x and y are objects in
clusters X and Y, and Dx;y is the distance between objects x and
y, and DX;Y is the distance between clusters X and Y.
SLINK: The distance between clusters is calculated as the mini-
mum distance among each pair of objects in two clusters X and
Y. If cluster X has nX objects, and cluster Y has nY objects, the
distance between clusters X and Y is calculated as the minimum
of all distances from x to y, where x is an object in X and y is an
object in Y.
DX;Y ¼ minðDx;yÞ
whereDx;y is the distance between objects x and y, andDX;Y is the
distance between clusters X and Y. When the distances between
all pairs of clusters have been calculated, then the two clusters
with minimum distance will be merged. This can be repeated
until all clusters merge into one. This algorithm has a tendency
to chaining which makes it suitable for with chain-like and con-
centric clusters (Romesburg, 1990).
UPGMC: The distance between two clusters X and Y, is calcu-
lated as the distance between their centroids instead of their
averages.
DX;Y ¼ D�x;�y
where �x and �y are the centroids of cluster X and Y respectively,
which are calculated by arithmetic mean of the corresponding
objects in the cluster.

3.5. Coefficients of correlation

The coefficient of correlation calculates the relationship
between two variables X and Y. In this study we use the Pearson
coefficient which can be calculated as:

rX;Y ¼
Pn

i¼1xiyi �
Pn

i¼1
xi

� �
�
Pn

i¼1
yi

� �
nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1x2
i

� �
�
Pn

i¼1
xi

� �2

n

 !
�

Pn
i¼1y2

i

� �
�
Pn

i¼1
yi

� �2

n

 !vuut
ð1Þ

where X ¼ ðx1; x2; x3; . . . ; xnÞ and Y ¼ ðy1; y2; y3; . . . ; ynÞ. The coeffi-
cients of correlation draw their values from the range ½�1;1� with
the value 1 representing a perfect correlation, 0 representing no
correlation, �1 representing negative correlation.

3.6. Normalization

As the nominal value does not usually correspond to the impor-
tance of the attribute, there is a need to give all attributes appropri-
ate and comparable weights. This is achieved by normalizing the
attributes’ values There are different functions that can be used
to normalize the attributes. One of the most widely used is

Zij ¼ ðXij � AvgiÞ=ri;



A. Bouguettaya et al. / Expert Systems with Applications 42 (2015) 2785–2797 2789
where Xij is the ith attribute of jth object, Avgi is the average for
attribute i across the objects, and ri is the standard deviation for
the ith attribute.

Another function, falling in the group which uses proportions, is:

Zij ¼ ðXij � Ximin
Þ=ðXimax � Ximin

Þ;

where Ximin
and Ximax are the minimum and the maximum value,

respectively, of the ith attribute over all objects. Xij is the value of
attribute i of object j, and Zij is the normalized value of Xij. When
considering a selection of a normalizing function, one could take
into account the fact that the second one, produces positive normal-
ized values within the range [0,1], while the first one produces posi-
tive, as well as negative normalized values. In this study the second
function is chosen as the normalization method.

3.7. Handling qualitative and quantitative data

In general data can be classified as either qualitative or quantita-
tive. Quantitative data are continuous or discrete values, e.g. height,
weight, and speed. In contrast qualitative data contain nominal
states, e.g. color, education, gender, and disease symptoms. For dis-
tance measure numerical encoding is needed so data can be stored
numerically. Qualitative data are encoded as multi-state or binary.
Multi-state can be represented by ordinal encoding. For example
data objects can be teacher = 1, doctor = 2, student = 3) or tea-
cher = [1,0,0], doctor = [0,1,0], student=[0, 0, 1]. The difference
between two qualitative attributes xi and yj (which are both repre-
sented as multi-state vectors) can be calculated as: 1� xi � yj,
where xi � yj denotes the dot product of xi and yj.

4. Experimental data sets

In this study we used two types of data: synthetic data and real
data for evaluation. They are described below.

4.1. Synthetic data

To evaluate whether the KnA clustering method presented here
works well on different types of data, we introduced a set of syn-
thetic data in which the distribution can be easily controlled. Data
sets with Uniform distribution and Normal distribution were used in
the main experiments and data sets with Exponential distribution
and Zipf distribution are used in the extended experiments. These
four distributions are described below:

Uniform distribution: This distribution is described by FðxÞ ¼ x,
where the density function is f ðxÞ ¼ F 0ðxÞ ¼ 1, for 0 6 x 6 1,
or in more general case, for a 6 x 6 b, f ðxÞ ¼ 1=ðb� aÞ.
f ðxÞ ¼ 0 for x outside this interval. This distribution means that
the probability of x falling within an interval is proportional to
the size of the interval and is the same for all values of x.
Normal distribution: Normal distribution (also called Gaussian
distribution) is described by its density function

f Xðx1; . . . ; xNÞ ¼ 1
ð2pÞN=2 jRj1=2 exp � 1

2 ðx� lÞTR�1ðx� lÞ
� �

, where

l ¼ ½l1; . . . ;lN�
T and R is a positive-definite covariance matrix.

This distribution is the one most often found in nature. Its shape
is like a bell, hence its known as bell distribution.
Exponential distribution: The exponential distribution is fre-
quently used to model the time interval between successive
random events. Examples of variables distributed in this man-
ner would be the gap length between cars crossing an interac-
tion or arrivals of customers at the checkout counter in a
store. The exponential distribution function is defined as:
f ðxÞ ¼ k� e�kxð0 6 x <1Þ, where k is an exponential function
parameter.
Zipf distribution: A Zipf distribution is a set of values (samples)
that follow the Zipf’s law. The density function of Zipf distribu-
tion is defined as: f ðxÞ ¼ C=xa for x in 1 6 x 6 N where C is the
normalization constant (i.e.,

P
f ðxÞ ¼ 1).

We generated multidimensional sets of data with 50 attributes,
using uniform and normal distributions. The sizes of the datasets
start from 100 objects with increments of 100 up to a size of
600. We first generate 50 seed values (as many as the number of
attributes) and use each one of them as initial input for a generator
of random numbers. We successively use the uniform distribution
and normal distribution. For example, for the 100 objects set, we
generate 100 values for each attribute. Each step is repeated for
both distributions. Data is normalized using ratio standardizing
method.

4.2. Real-world movie data

In this set of experiments, we use real-world data: a large data-
set on movie ratings (Project, n.d.). We used the publicly available
dataset that consists of approximately one million ratings for
3900 movies by 6040 users.

In what follows, we describe this movie ratings data. The master
file contains user id, movie id, ranking, and timestamp. Another file
contains the movie genre classification and user information. For
faster processing, we replaced the user id with gender, occupation
and age data from the user file. The gender takes F (Female) or M
(Male) values. We replaced these values with 0 or 1, respectively.
The occupation is encoded as ordinal values from 1 to 20. The age
is in groups indicating upper age limit. For example, the value 1
is for users up to 17 years old, 18 is for users from 18 to 24 years
old, 25 is for users 25 to 35, etc. We replaced the movie id with
18 fields of genre information from the movie file. Each field repre-
sents a particular genre. A movie has a value of 1 if it falls in this
genre or 0 otherwise. Understandably, most of the fields values
have zeros for each of the records.

It is important to note that we use sets of data with mixed attri-
bute types. For example, the first attribute, gender, takes a binary
value. The second and third attributes, occupation and age, are
qualitative, and are encoded using ordinal numbers. The fourth
to the twentieth attributes are multi-state binary, where 1 means
presence of the attribute value and 0 means absence of the attri-
bute value. The last one, ranks, belongs to the qualitative group.
As previously mentioned, there are different coefficients of resem-
blance that are suitable for this type of data. We use a popular
approach to selecting the resemblance coefficient in case of mixed
types of attributes: they are ignored. We then use Euclidean coeffi-
cient as a resemblance measure. The reason for not using the Can-
berra coefficient is the nature of the set of data: 19 of the total of 22
attributes can only have 0 or 1 values. Furthermore, because 18 of
these 19 describe genre, i.e., a movie falls into one, two, three cat-
egories but rarely in more than three categories, about 15 attri-
butes with zero values can be present in a single data object. The
probability that an attribute value is zero simultaneously for two
objects is very high. This makes the Canberra distance unfit for this
type of data because it is undefined when two objects have a zero
for the same attribute value.

There are essentially three main parts in the experiments using
real data. Once we have the file in this form, it is sorted by time-
stamp. A generator of random numbers with uniform distribution
is used to draw random sets of data from the 1,000,000-records
sorted master dataset. As a result, six datasets with sizes 100 to
600 at a step of 100 are obtained. As was the case with synthetic
data, we proceed in a similar manner except that the Canberra dis-
tance is not used. In the second part of the experiment, the same
number of records is drawn from the master file for each group



2790 A. Bouguettaya et al. / Expert Systems with Applications 42 (2015) 2785–2797
of users, where a group of users is formed by age and occupation.
Gender is left out as we want to be sex-blind for the purpose of the
study. We use 120 age-occupation groups. Sets with sizes 120, 240,
360, 480, 600, 720 are drawn. The third part of the real data exper-
iments is based on a third type of samples of the 1,000,000 record
dataset. From the 20 occupations, an equal number of records are
randomly selected and drawn from the original dataset. The result-
ing sets are grouped by occupation. For example, for the smallest
dataset of size 100 we have 5 objects with attribute occupation
1, followed by 5 with occupation 2, etc.

5. Experiments and results

5.1. Experimental settings

As mentioned previously, our hierarchical method is based on
K-means where the K value is to be defined. In our method, this
parameter is determined as the ratios of the number of clusters
to total number of original data-objects, ranged from 0.1 to 1.0 at
a step of 0.1. For example, each experiment will carry out 10 times
for a dataset of 600 objects with the number of clusters varying
from 60 to 600 at a step of 60. Distances between data objects
are Euclidean distance and Canberra distance.

Based on the output from the above K-means, hierarchies were
generated by UPGMA and SLINK in the main experiments and by
UPGMC in the extended experiments. Hierarchies were also gener-
ated directly on those original data objects for comparison pur-
pose. Pearson correlation coefficient was performed to compare
each pair of hierarchies on a same dataset, one from centroids gen-
erated by K-means and one from individual objects. This correla-
tion is calculated between the corresponding members of the
cophenetic matrices.

A summary of the experiment settings is shown in Table 1. Con-
sidering all setting combinations including, statistical distribution,
dataset size, cluster-to-data ratio, distance measure, agglomerative
mechanism, and cluster representation, there are total of 960 com-
binations. Each experiment combination is repeated 50 times for
result validation. The set of extended experiments is to further val-
idate the findings from the main experiments. These include
enlarging the datasets (up to 10 k), investigating less usual statis-
tical distributions (Exponential and Zipf), and employing different
agglomerative approach (UPGMC).

5.2. Results

Since each experiment is repeated 50 times, the least-square
method is used for accessing the ‘‘acceptability’’ of the results
(Bouguettaya et al., 2002) to ensure that all of the results are cred-
ible. This method is not applicable on movie data because the data
is pre-existing and therefore the standard variation would be 0.

The results from our experiments are presented in a series of
tables. Their key purpose is to show mainly two aspects of our
investigation: firstly whether the cluster hierarchy generated by
the standard agglomerative approach and that from the ‘KnA’
method are similar or not by showing the correlation between
Table 1
Experiment settings.

Parameter Main experiments Extended experiments

Distribution Uniform, Normal Exponential, Zipf
Dataset size 100 to 600 Up to 10 k
Distance Measure Euclidean, Canberra
Algorithm SLINK, UPGMA UPGMC
Ratio 0.1 to 1.0
Cluster Representation Centroid, Individual Objects
them, secondly whether the computational cost is reduced by the
‘KnA’ method. Along that line these tables also show the impact
of varies facts on the above aspects, including the ratio of clus-
ter-to-data, distance measures, and agglomerative approaches.

Fig. 1 shows an example of results which are from the
experiments on the data of uniform distribution using Slink as
the hierarchical method and Euclidean distance measure. The left
sub-figure on the top row is the results from ‘KnA’ and the right
one is for the standard agglomerative method without K-means.
The bottom sub-figure shows the time spent on K-means calcula-
tion alone during the ‘KnA’ processes. These figures show the
results of 10 data ratio from 0.1 to 1. For each data ratio, the data
size gradually increase from 100 to 600. For the sake of compari-
son, the right sub-figure ‘Standard’ is in reverse. The y-axes on
these graphs are time in seconds. One can clearly observe that
the K-means component takes much less time compared to the
agglomerative component as all measures of K-means in Fig. 1
are less than 1 s while most of the measure for the agglomerative
part are more than 20 s. So the computational cost of the first stage
K-means component can be ignored.

Furthermore we can see from Fig. 1 that the required time for K-
means increases in a linear fashion. However the growth on the top
row figures appears quadratically as the complexity of hierarchical
algorithms is Oðn2lgnÞ.

One can clearly observe in comparing the figures that depict the
first stage and those that depict the second stage that the time for
the first stage is negligible compared to the time needed for the
second stage. The time to build clusters seems to grow linearly
with a low value for the slope. In contrast, the time to build a tree
seems to grow quadratically with the size of the dataset. This is
expected as it is known that the computational complexity of this
type of hierarchical algorithms is Oðn2lgnÞ.

A very important observation is that there is a sizeable differ-
ence between the execution times using centroids (‘‘KnA’’, on the
left), and all objects (‘‘Standard, on the right), especially when
the ratios are smaller. The execution times using centroids are con-
sistently lower than those for all objects method. This gap widens
quickly between the two approaches’ execution times as the ratio
decreases. The only exception is when the ratio is 1. Using either
centroids or all objects has the same execution times because all
objects approach mutates to the centroid approach where each
object is a centroid.

Table 2 gives more detailed results obtained from the data of
uniform distribution at 600 data points. The four combinations of
UPGMA or SLINK and Eculidean Distance or Canberra Distance
are shown in the table for data ratios from 0.2 to 0.9 as the two
extremes 0.1 and 1.0 are not that informative in comparison. For
each row the time spent by ‘‘KnA’’ and by the standard agglomer-
ative approach are listed. The correlation between the two cluster
groups generated by these two methods is also presented in the
table. Similar to what is shown in Fig. 1, this table also shows that
lower data ratio require much less time compared to the standard
counterpart. At ratio 0.2, the difference is way more than 10 times,
while at ratio 0.9, KnA is less advantageous (see Table 3).

Another important observation is that the clustering outcome
exhibits high similarities between both approaches, especially at
high data ratios. At ratio 0.9, the correlations between two cluster
groups are around 0.8. Even at ration 0.2, the correlations are
around 0.4. That gives a big advantages to the KnA approach
because its clustering results are not too far different from that
of Standard method yet the cost could be much lower. A user can
potential tune this ratio to achieve the idea balance between fast
execution and good cluster quality. One thing we need to point
out is that specifying a data ratio is different from specifying the
k value in K-means because the ratio is independent from the
actual data itself.



Fig. 1. Example results: K-means followed by Slink using Euclidean distance on Uniform distribution data.

A. Bouguettaya et al. / Expert Systems with Applications 42 (2015) 2785–2797 2791
In terms of the effect of UPGMA and SLINK approaches for rep-
resenting cluster groups, the difference between them are not
obvious. UPGMA requires a little more time than SLINK as shown
in Table 2. That is understandable because UPGMA needs to com-
pute the averages of all points in the cluster while SLINK only take
one. When comparing distance measure functions, Canberra Dis-
tance seems better than the Eculidean counterpart. With no notice-
able difference in computational cost, correlation achieved by the
Canberra method is consistently higher than the correlation
obtained by the Eculidean method on a same data set with either
UPGMA or SLINK.

The above observations mostly hold true on the results from
Normal Distribution Data: lower data ratios cost less computation
power and do not negatively affect the clustering qualities, Can-
berra Distance is in general better than Eculidean Distance. How-
ever due to the nature of this data, UPGMA gives worse result
than SLINK. Averaging non-centroid points, which is used in
UPGMA, could result bias, while that is less likely by SLINK’s single
point approach. So the SLINK/Canberra combination seems the
ideal choice.

When applying the KnA method on real-world data, the out-
come is similar to that on synthetic data. Figs. 2–4 illustrates the
execution time by KnA and by standard agglomerative method,
on various size of data, with different data ratio for the K-mean par-
tition process. The increase of actual execution times with data size
is not as smooth as that for synthetic data. This is due to the nature
of these data. Because there are identical values for the attributes of
different records in the data set, the algorithm must continue
searching for centroids if it happens to select a centroid that is iden-
tical to one that has already been selected. This may, as a result,
increase the execution time. This is especially true if the sample
dataset contains a sizeable number of identical values of the consid-
ered attributes. Note also that the maximum number of clusters is
determined by the number of different records. For example, if we
have a set of 750 objects and 700 different records (considering only
those attributes that we are clustering on), the clustering would
have to consider 750 objects, although. the maximum number of
clusters K-means would be 700 clusters (ratio = 1).

When the data ratio for K-means is 1 on these real-world data,
the KnA algorithm is also almost equivalent to using a pure hierar-
chical method. The increase of execution time with data size is also
quadratic. That means the standard agglomerative clustering on
large data sets can quickly become computation prohibitive, while
the running cost for KnA grows much slower especially at low data
ratios. In the mean time, as we can see from Figs. 2–4, the perfor-
mance of KnA is not much different with the standard approach as
the correlations between the clusters generated by these two
methods are mostly above 0.8. So the advantage of KnA method
is evident as it offers a good solution for handling clustering tasks
where cost is a concern.



Table 2
Experiments on data of uniform distribution.

Data ratio KnA(ms) Standard(ms) Correlation

UPGMA/Eculidean 0.2 1 20 0.39
0.3 3 32 0.41
0.4 12 42 0.46
0.5 30 61 0.53
0.6 52 88 0.62
0.7 81 121 0.71
0.8 122 154 0.80
0.9 178 198 0.87

SLINK/Eculidean 0.2 1 17 0.42
0.3 2 22 0.44
0.4 9 38 0.49
0.5 22 52 0.51
0.6 41 74 0.55
0.7 63 96 0.60
0.8 102 126 0.67
0.9 149 162 0.78

UPGMA/Canberra 0.2 1 21 0.44
0.3 4 40 0.47
0.4 9 60 0.50
0.5 22 82 0.57
0.6 41 102 0.66
0.7 76 132 0.72
0.8 118 166 0.80
0.9 151 197 0.88

SLINK/Canberra 0.2 2 18 0.52
0.3 3 26 0.58
0.4 10 40 0.61
0.5 21 53 0.64
0.6 40 76 0.69
0.7 61 97 0.74
0.8 98 128 0.80
0.9 138 156 0.89

Table 3
Experiments on data of normal distribution.

Data size KnA Standard Correlation

UPGMA/Eculidean 0.2 1 13 0.47
0.3 2 25 0.48
0.4 9 40 0.50
0.5 23 62 0.51
0.6 42 82 0.54
0.7 74 115 0.61
0.8 114 143 0.65
0.9 160 181 0.70

SLINK/Eculidean 0.2 1 10 0.78
0.3 3 18 0.79
0.4 8 29 0.80
0.5 20 42 0.82
0.6 41 61 0.83
0.7 61 82 0.84
0.8 94 115 0.85
0.9 136 144 0.87

UPGMA/Canberra 0.2 2 21 0.62
0.3 4 40 0.63
0.4 11 57 0.66
0.5 23 68 0.68
0.6 41 100 0.70
0.7 68 121 0.72
0.8 113 157 0.78
0.9 178 182 0.82

SLINK/Canberra 0.2 1 19 0.82
0.3 3 24 0.83
0.4 9 37 0.84
0.5 21 58 0.85
0.6 40 76 0.86
0.7 62 98 0.87
0.8 99 124 0.88
0.9 141 158 0.91

2792 A. Bouguettaya et al. / Expert Systems with Applications 42 (2015) 2785–2797
6. Discussions

6.1. Impact of data distribution

The synthetic data used in this experiment was generated using
two types of distribution: uniform and normal distributions. The
results show that the our method is not very sensitive to the distri-
bution of data although distribution does influence the outcome.
This is especially the case when SLINK is used in the second phase
of the clustering process. To further evaluate how the method react
to data distribution, we introduced exponential distribution and
Zipf distribution in the extended experiments. We use both
UPGMA and SLINK with Euclidean distance. As shown in Figs. 5
and 6, the result is similar as obtained on normal distribution.
The correlations are above 0.5 for all cluster-objects ratios after
600 data points. SLINK can better cope with these contributions.
In the case of Exponential distribution, SLINK maintains a high cor-
relation across all data ratio even when the ratio is as low as 0.1.
The impact of Zipf distribution is similar to that of Normal distribu-
tion on our method.

6.2. On movie data

For real-world data, the movie data, the results of the experi-
ments are presented Figs. 2–4, which are the results obtained by
using SLINK approach. The results by UPGMA are quite similar in
terms of computational cost over different data size with different
data ratio. In terms of correlation with the agglomerative methods,
those of UPGMA are slightly lower than those of SLINK. Neverthe-
less from these figures we can see a very strong correlation in
almost all cases of cluster-objects ratios. We conjecture that there
are two main reasons for this strong correlations. First, a large
amount of data in the real world tend to have a normal distribu-
tion. Therefore, we expect the results to be similar to those of
the synthetic data generated using a normal distribution. Second,
taking into account that the gender multi-state attributes have
many ‘‘0’’s that represent the value ‘‘absent’’ and that we use the
Euclidean distance, we expect the correlation to be high. As we
use Euclidean distance, all ‘‘0’’s in the same attributes contribute
to the similarity of two objects. Combining these two factors, these
centroids would be good representatives of the individual data
points in the cluster and therefore for the two resulting cluster
groups to have high correlation.
6.3. Data size

When considering the effect of data sizes on the clustering per-
formance, the previous figures clearly show that size itself does not
affect the correlation that much especially at a slightly higher data
ratio. We observe that the lines on correlation figures are almost
flat over the range of data sizes [100–600]. The correlations are
consistent across different data size, while the computational cost
grow at a quadratic pace but much slower than that of the agglom-
erative approach.

In our extended experiment, we increase the data size to 1600.
As shown in Fig. 7, the results confirm the previous observation
since we do not see significant change in results based on dataset
size. This also largely confirms the previous results clustering
multi-dimensional objects (Bouguettaya et al., 2002).
6.4. Distance type

As mentioned before, we used two types of distance (resem-
blance measures) for the synthetic data: Euclidean Distance and



Fig. 2. Results: K-means followed by Slink using Euclidean distance on movie data – random grouping.

Fig. 3. Results: K-means followed by Slink using Euclidean distance on movie data – occupation.

A. Bouguettaya et al. / Expert Systems with Applications 42 (2015) 2785–2797 2793



Fig. 4. Results: K-means followed by Slink using Euclidean Distance on movie data – age and occupation.

Fig. 5. Experiments on data of exponential distribution.

2794 A. Bouguettaya et al. / Expert Systems with Applications 42 (2015) 2785–2797
Canberra Distance. In general they do not have significant difference.
The only slight difference is in the results on data of Uniform Distri-
bution. This means that the distance type had little influence on the
clustering when the distribution is uniform. The Euclidean and Can-
berra distances for Slink give higher values for the coefficients of
correlation than those for UPGMA suggesting that the clustering
method has a small influence on the type of distance used.

6.5. Agglomerative approaches

While analysing the results from the two methods (i.e., SLINK
and UPGMA), it can be noticed that with normal distribution there
is some difference in the correlation levels obtained with SLINK
and UPGMA (Table 2, Figs. 5 and 6). The correlation obtained using
SLINK is slightly higher and more stable than the correlation
obtained with UPGMA. SLINK also seems less sensitive to the initial
number of clusters in K-means. It shows very little spread between
the lines with different ratios. In our extended experiments on the
synthetic data, we apply Centroid Linkage (i.e., UPGMC) method
with both Canberra and Euclidean distances on uniform data. As
shown in Fig. 8, the results give a very strong correlation. This is
because UPGMC also uses the centroids of clusters to calculate dis-
tances between clusters. Therefore, in the initial several steps of
the second phase, using centroids and using all objects will have
similar behavior. The difference may come from the later part of
the clustering.



Fig. 6. Experiments on data of Zipf distribution.

Fig. 7. Runtime on large data sets.

Fig. 8. UPGMC on Data of Uniform distribution using Euclidean distance and Canberra distance.

1 Maybe need rewritten. SLINK seems a bit better while UPGMA and UPGMC are
not far away from it. It further illustrates that the KnA approach is not particularly
dependent on a certain approach.

A. Bouguettaya et al. / Expert Systems with Applications 42 (2015) 2785–2797 2795
Fig. 9 illustrates the impact of centroids in UPGMC. Assume that
there are four clusters generated from K-means, K1 to K4. By using
UPGMC, the distances between these clusters are the same when
using both centroid and all objects. Therefore, cluster K1 and K2

will always be merged initially to generate C12. After that, the dis-
tances between clusters may become different between using cen-
troids and all objects. For example, when using centroids, the new
centroid of cluster C12 is CC whereas the new centroid of C12 is AC
when all objects are used. In this regard, C12 will be merged with K4
when centroids are used. In contrast, C12 will be merged with K3

when all objects are used.1

As for the real-world Movie data, we also observe a slight
difference in the behaviors of UPGMA and SLINK. However, the



Fig. 9. Behavior of UPGMC.

2796 A. Bouguettaya et al. / Expert Systems with Applications 42 (2015) 2785–2797
difference is not as obvious as on the above mentioned synthetic
data including normal, exponential, or Zipf distribution.
7. Conclusion

In this paper, we present a methodology, named as KnA
method, to improve the efficiency of hierarchical clustering.
Instead of clustering on individual data objects, the hierarchy
generated by this KnA method is based on a group of sub-clusters
created by a partitional method K-means. The computational cost
reduction of KnA method has been investigated on synthetic data
with different distributions as well as on real-world data. The
results clearly demonstrate the cost saving introduced by our
proposed method. On the other hand the clustering hierarchy
created by KnA method does not differ much with that from the
standard agglomerative hierarchical clustering method. The set of
conducted experiments clearly show that, for the most part, there
is high correlation between the trees produced by the proposed
method using centroids and the tree produced by using all data
points. Therefore the proposed KnA method can be a cost-effective
clustering method without losing clustering performance.

To study the applicability of this efficient clustering method, we
investigated the impact of different settings such as the type of
data, the distribution of the data, the distance measure, the choice
of agglomerative methods, the ratio of cluster-to-data. Our exper-
iments show that there is a strong correlation between the use of
centroids and the use of all objects with little influence from the
cluster-objects ratio when the data distribution follows normal,
exponential, or Zipf distribution. That is still the case on data of
uniform distribution when the cluster-objects ratios are high.
Our experiments also show that the distance type has little influ-
ence on the performance of our method (e.g., UPGMA, SLINK, and
Centroid Linkage all have different effects on the correlation).
Because the correlations between the hierarchies from the KnA
method and the standard hierarchical clustering method are
consistently high with only a few exceptions, we conclude that
the choice of distance measure and the agglomerative methods
does not affect the overall performance of our method that much.

The contribution of this work is the proposed KnA method which
has computational advantages over hierarchical clustering
approaches as it uses centroids rather than raw data points. It
reduces the sample space for building the hierarchy hence requires
less resources. Therefore the KnA method can potentially analyze
larger data sets or operate in a resource limited environment. This
performance of this method is not sensitive to the distribution of
data set and the distance measure. These strengths make
this KnA method widely applicable especially to real-world
applications as specific tuning and adjustment are not necessary.
In comparison with other methods, the KnA does have weaknesses
in certain situations. For example, it is difficult to control the the
clusters in KnA when the number of clusters is unknown by domain
experts.

This work opens many possibilities for further improvement
and investigation. We plan to generalize the findings from this
study. For example our future work will cover the impact of other
various facts on this KnA approach, including different hierarchical
methods (e.g., Ward, Clink), distributions, and high-dimensional
data. By these studies the applicability of the KnA method can be
further extended. More real-world data will be tested by this
method. Moreover we will compare other hybrid clustering algo-
rithms similar to Cheng et al. (2005).

Acknowledgemet

Funding for this 1 was partly supported by ARC grant for
Xiangmin Zhou (DP140100841).

References

Altingövde, I. S., Demir, E., Can, F., & Ulusoy, Ö. (2008). Incremental cluster-based
retrieval using compressed cluster-skipping inverted files. ACM Transactions on
Information Systems, 26(3).

Bouguettaya, A. (1996). On-line clustering. IEEE Transactions on Knowledge and Data
Engineering, 8(2), 333–339.

Bouguettaya, A., Qi, H., Park, J.-H., & Delis, A. (2002). Wards and upgma clustering of
data with very high dimensionality. Encyclopedia of computer science and
technology, 45.

Cheng, D., Kannan, R., Vempala, S., & Wang, G. (2005). A divide-and-merge
methodology for clustering. In PODS (pp. 196–205).

Dhillon, I. S., Guan, Y., & Kulis, B. (2004). Kernel k-means: Spectral clustering and
normalized cuts. In KDD (pp. 551–556).

Guha, S., Rastogi, R., & Shim, K. (1998). Cure: An efficient clustering algorithm for
large databases. In SIGMOD (pp. 73–84).

Hruschka, E. R., Campello, R. J. G. B., Freitas, A. A., & de Leon F. de Carvalho, A. C. P.
(2009). A survey of evolutionary algorithms for clustering. IEEE Transactions on
System man and Cybernetics Part C – Applications and Reviews, 39(2), 133–155.

Jacinth, Salome J., & Suresh, R. M. (2012). Efficient clustering for gene expression
data. International Journal of Computer Applications, 47(5), 30–35.

Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: A review. ACM
Computing Surveys, 31(3), 264–323.

Parsons, L., Haque, E., & Liu, H. (2004). Subspace clustering for high dimensional
data: A review. SIGKDD Explorations Newsletter, 6(1), 90–105.

Lee, J., Han, J., Li, X., & Gonzalez, H. (2008). raClass: trajectory classification using
hierarchical region-based and trajectory-based clustering. PVLDB, 1(1),
1081–1094.

Lee, J., Han, J., & Whang, K. (2007). Trajectory clustering: A partition-and-group
framework. In SIGMOD (pp. 593–604).

Li, T., & Ding, C. H. Q. (2006). The relationships among various nonnegative matrix
factorization methods for clustering. In ICDM (pp. 362–371).

Lin, C., & Chen, M. (2005). Combining partitional and hierarchical algorithms for
robust and efficient data clustering with cohesion self-merging. IEEE
Transactions on Knowledge and Data Engineering, 17(2), 145–159.

Lin, C.-R., Liu, K.-H., & Chen, M.-S. (2005). Dual clustering: Integrating data
clustering over optimization and constraint domains. IEEE Transactions on
Knowledge and Data Engineering, 17(5), 628–637.

Liu, G., Li, J., Sim, K., & Wong, L. (2007). Distance based subspace clustering with
flexible dimension partitioning. In ICDE (pp. 1250–1254).

Liu, H., & Yu, L. (2005). Toward integating feature selection algorithms for
classification and clustering. IEEE Transactions on Knowledge and Data
Engineering, 17(4), 491–502.

Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing, 17(4),
395–416.

Ng, A. Y., Jordan, M. I., & Weiss, Y. (2001). On spectral clustering: Analysis and an
algorithm. In Advances in neural information processing systems (pp. 849–856).
MIT Press.

Ordonez, C., & Omiecinski, E. (2004). Efficient disk-based k-means clustering for
relational databases. IEEE Transactions on Knowledge and Data Engineering, 16(8),
909–921.

Pan, F., Zhang, X., & Wang, W. (2008). CRD: fast co-clustering on large datasets
utilizing sampling-based matrix decomposition. In SIGMOD (pp. 173–184).

Project, G. R. (n.d.). <http://www.cs.umn.edu/Research/GroupLens/index.html>.
Rokach, L. (2010). A survey of clustering algorithms. In Data Mining and Knowledge

Discovery Handbook (pp. 269–298).
Romesburg, H. (1990). Cluster analysis for researchers. Malabar, FL: Krieger

Publishing Company.
Shalom, A., & Dash, M. (2013). Efficient partitioning based hierarchical

agglomerative clustering using graphics accelerators with cuda. International
Journal of Artificial Intelligence and Applications, 4(2), 13–33.

http://refhub.elsevier.com/S0957-4174(14)00615-0/h0005
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0005
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0005
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0010
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0010
http://refhub.elsevier.com/S0957-4174(14)00615-0/h6010
http://refhub.elsevier.com/S0957-4174(14)00615-0/h6010
http://refhub.elsevier.com/S0957-4174(14)00615-0/h6010
http://refhub.elsevier.com/S0957-4174(14)00615-0/h4010
http://refhub.elsevier.com/S0957-4174(14)00615-0/h4010
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0025
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0025
http://refhub.elsevier.com/S0957-4174(14)00615-0/h9010
http://refhub.elsevier.com/S0957-4174(14)00615-0/h9010
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0035
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0035
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0035
http://refhub.elsevier.com/S0957-4174(14)00615-0/h9020
http://refhub.elsevier.com/S0957-4174(14)00615-0/h9020
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0045
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0045
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0050
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0050
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0055
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0055
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0055
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0070
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0070
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0070
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0075
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0075
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0075
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0085
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0085
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0085
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0090
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0090
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0095
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0095
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0095
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0100
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0100
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0100
http://www.cs.umn.edu/Research/GroupLens/index.html
http://refhub.elsevier.com/S0957-4174(14)00615-0/h7010
http://refhub.elsevier.com/S0957-4174(14)00615-0/h7010
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0120
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0120
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0125
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0125
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0125


A. Bouguettaya et al. / Expert Systems with Applications 42 (2015) 2785–2797 2797
Wattanachon, U., Suksawatchon, J. & Lursinsap, C. (2009). Nonlinear data
analysis using a new hybrid data clustering algorithm. In PAKDD
(pp. 160–171).

Wu, O., Hu, W., Maybank, S. J., Zhu, M., & Li, B. (2012). Efficient clustering
aggregation based on data fragments. IEEE Transactions on Systems, Man, and
Cybernetics, Part B, 42(3), 913–926.

Xu, R., & Wunsch, D. (2010). Clustering algorithms in biomedical research: A review.
IEEE Reviews in Biomedical Engineering, 3, 120–154.
Zhang, T., Ramakrishnan, R., & Livny, M. (1996). Birch: an efficient data clustering
method for very large databases. SIGMOD Record, 25(2), 103–114.

Zhao, Y., Yu, J., Wang, G., Chen, L., Wang, B., & Yu, G. (2008). Maximal subspace
coregulated gene clustering. IEEE Transactions on Knowledge and Data
Engineering, 20(1), 83–98.

Zhou, X., Zhou, X., Chen, L., Shu, Y., Bouguettaya, A., & Taylor, J. A. (2009). Adaptive
subspace symbolization for content-based video detection. IEEE Transactions on
Knowledge and Data Engineering, 22(10), 1372–1387.

http://refhub.elsevier.com/S0957-4174(14)00615-0/h0135
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0135
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0135
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0140
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0140
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0145
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0145
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0150
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0150
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0150
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0155
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0155
http://refhub.elsevier.com/S0957-4174(14)00615-0/h0155

	Efficient agglomerative hierarchical clustering
	1 Introduction
	2 Related work
	2.1 Hierarchical clustering
	2.2 Partitional clustering
	2.3 Hybrid clustering
	2.4 Important applications

	3 Methodology
	3.1 Overview
	3.2 Distance measure
	3.3 Partitional clustering: K-means
	3.4 Agglomerative hierarchical clustering
	3.5 Coefficients of correlation
	3.6 Normalization
	3.7 Handling qualitative and quantitative data

	4 Experimental data sets
	4.1 Synthetic data
	4.2 Real-world movie data

	5 Experiments and results
	5.1 Experimental settings
	5.2 Results

	6 Discussions
	6.1 Impact of data distribution
	6.2 On movie data
	6.3 Data size
	6.4 Distance type
	6.5 Agglomerative approaches

	7 Conclusion
	Acknowledgemet
	References


