
Knowl Inf Syst (2015) 43:417–443
DOI 10.1007/s10115-013-0723-x

REGULAR PAPER

CloudRec: a framework for personalized service
Recommendation in the Cloud

Qi Yu

Received: 8 February 2013 / Revised: 30 September 2013 / Accepted: 04 December 2013 /
Published online: 9 January 2014
© Springer-Verlag London 2014

Abstract The elastic computing power and the pay-as-you-go model of the cloud offer an
attractive platform to deploy software as a service applications. The large number of appli-
cations expected to heavily take advantage of the cloud will result in an explosive growth of
various cloud services. As many cloud services may compete to offer similar functionalities, it
is desirable to consider user preferences on the nonfunctional service properties (aka, quality
of service, or QoS) when delivering cloud services to the end users. Unfortunately, current
approaches primarily rely on the descriptions from the cloud service providers or expert-
provided rankings, which are completely orthogonal to the open and distributed nature of the
cloud. We present a novel framework (referred to as CloudRec) that exploits a user-centric
strategy to achieve personalized QoS assessment of cloud services. CloudRec integrates a
novel community-based QoS assessment model with an iterative algorithm to accurately dis-
cover a set of homogenous user and service communities from scarce and large-scale QoS
data. The communities can serve as a bridge to relate users and services and hence provide
an effective means to estimate the QoS of unknown cloud services. The effectiveness of the
proposed framework is demonstrated through a rigorous theoretical analysis and an extensive
empirical study on real QoS data.

Keywords Cloud computing · QoS · Service recommendation ·Matrix factorization

1 Introduction

Cloud computing offers an attractive paradigm for the provisioning of computing resources
across a wide spectrum of domains. The large number of applications expected to heavily
take advantage of the cloud will lead to the deployment of substantial cloud services [45].
Hence, a fundamental task is to help users select their desired cloud services from an open

Q. Yu (B)
College of Computing and Information Sciences,
Rochester Institute of Tech, Rochester, NY, USA
e-mail: qi.yu@rit.edu

123

418 Q. Yu

and dynamic cloud environment. Existing proposals that can be applied to cloud service
selection fall into two categories that are complementary to each other: functionality-based
and QoS-based. The former primarily focuses on the discovery of cloud services that satisfy
user required functionality (e.g., map, weather, and traffic). Data mining techniques [20] and
semantic support (e.g., using ontologies) [32] have been exploited to improve the accuracy
of service discovery. QoS-based approaches, on the other hand, are used to differentiate
service providers based on their QoS performance [39,40]. The QoS is mainly made of
user-centered quality parameters and examples include availability, reliability, and response
time. QoS-aware service selection is critical in the cloud as the large number of services will
inevitably incur the competition among service providers that offer similar functionality. As
an example, when searching Map using webservices.seekda.com, more than 1,000 results
are returned. Selecting services solely based on their functionality may result in services with
undesirable QoS. The expected large number of competing cloud services and the lack of
technical skills of casual users demand a principled approach for assessing the QoS of cloud
services.

Accurate QoS assessment of cloud services is further complicated by a set of cloud-specific
characteristics that are embedded in user–service interactions. The elastic provisioning of
cloud resources is rooted in a distributed infrastructure instead of a few isolated powerful
machines [2]. Virtualization makes everything transparent, where users’ requests are han-
dled by a number of virtual machines that share the computing power underneath. Thus,
cloud services essentially run on multiple server instances that are dynamically assigned.
Despite that multiple virtual machines can share resources such as CPUs and main mem-
ory fairly well, the I/O sharing seems to pose some problems [3]. The unequal sharing of
the computing power will result in unpredictable performance of the cloud services which
will affect the QoS delivered to the users. On the other hand, cloud users may be located
in different network environments, using different development tools, and having different
physical distances with the cloud services they access [45]. These factors determine that the
QoS (e.g., response time and reliability) delivered to cloud service users will be disparate.
The discrepancy between cloud service users and the unpredictable performance of cloud
providers imply that users may indeed receive significantly different QoS from the same cloud
service.

Unfortunately, current QoS assessment approaches primarily rely on the QoS descriptions
from the cloud service providers or expert-provided rankings. Some monitoring mechanisms
have also been exploited to collect the QoS data, which is typically presented as averaged
values computed from past transactions with service users. Thus, these approaches are com-
pletely orthogonal to the open and distributed nature of the cloud environment, which makes
them incapable of handling the cloud-specific characteristics as described above. As a result,
these approaches will lead to QoS assessment that may be dramatically different from what
is actually received by the users.

Thus, in this paper, we propose a user-centric framework, referred to as CloudRec, which
takes into account cloud users’ QoS experiences to achieve personalized assessment of cloud
services. The ability to provide personalized QoS assessment is crucial to recommending
suitable cloud services to users due to the inherent characteristics of the cloud environment
(i.e., user discrepancy and performance unpredictability). The premise of the user-centric
strategy is that users who share similar historical experiences have some latent (cloud-related)
features in common (e.g., network quality, development environment, and physical distance to
the server instances), which implies a similar behavior among these users in future. Similarly,
cloud services that deliver similar QoS to users also share some common latent (cloud-related)
features (e.g., virtual machine performance). A central ingredient of the proposed CloudRec

123

CloudRec: a framework for personalized service recommendation in the cloud 419

framework is a set of user and service communities that group together users and services
sharing similar latent (cloud-related) features. The communities serve as a bridge to relate
users and services and hence provide an effective means to estimate the QoS of unknown
cloud services.

To accurately construct the user and service communities, we draw upon and significantly
extend the recently developed matrix factorization-based clustering approach. More specifi-
cally, the user and service communities are constructed through matrix tri-factorization that
essentially performs “co-clustering” on both users and services [17]. In this way, we not
only fully leverage the QoS data obtained from the historical user-service interactions, but
also take into account the embedded “duality” relationship between services and users [15].
Co-clustering has been shown to be more effective than “one-side” clustering in mining the
fast increasing dyadic data (e.g., user and service, and document and term). However, most
existing co-clustering algorithms adopt a graph-based model that requires solving expensive
eigenproblems [11]. In contrast, matrix factorization-based clustering is computationally
more efficient [11,23]. Furthermore, its workload can be easily parallelized and deployed to
a distributed infrastructure [30], like MapReduce [13]. In this way, it is capable of handling
extremely large-scale datasets, which is imperative for a cloud environment.

Nevertheless, there are three central challenges that hinder us from directly applying any
existing matrix factorization-based approach to construct user and service communities. In
the sequel, we describe each of these challenges along with the proposed strategies that tackle
these challenges.

1.1 Challenge 1

Directly applying matrix factorization without any constraints will result in cluster1 indicator
matrices whose entries can take arbitrary values. Thus, no stable community structure will
be obtained. To attack this issue, we propose a principled constraint on matrix factorization
to ensure proper cluster assignment. Entries in the cluster indicator matrices under the con-
strained matrix factorization can be directly interpreted as the cluster posterior probability.

1.2 Challenge 2

Since a typical user may have only used a very limited number of services, the QoS data
obtained from historical user–service interactions are usually very limited. Thus, it is neces-
sary to learn from other types of information available in the cloud environment. We propose
to leverage the geometric structures of user and service distributions and integrate them
with the constrained matrix factorization to improve the overall clustering accuracy. The key
premise is that users or services that are “close” to each other in their respective geometric
structures should have similar community memberships [4].

1.3 Challenge 3

Existing matrix factorization-based clustering approaches are only applicable to complete
matrices. However, we need to construct user and service communities from an incomplete
QoS matrix with many missing entries. In fact, the QoS matrix being incomplete is exactly
why we propose the user-centric assessment strategy, which aims to help users estimate the
QoS of an unknown cloud service so that they can choose the best one to use. A straight-
forward extension of existing approaches is to leverage a weighting mechanism that only

1 We use community and cluster in an exchangeable manner in the rest of the paper.

123

420 Q. Yu

uses observable QoS entries [23,41]. A major limitation with this approach is that it solely
relies on the information carried by the available QoS data, which may be very limited. We
believe that the community information obtained during the community learning process is
useful for estimating the missing QoS entries. Based on this intuition, we propose an iterative
algorithm that amalgamates community construction and QoS assessment into an integrated
process. This algorithm aims to leverage both the available QoS data and the community
information obtained during the community construction process. That is, the community
information obtained during the community construction process will be immediately used
to estimate the missing entries; the estimated missing entries will in turn be used to refine the
communities. In this regard, the communities and the missing entries will keep being refined
in an iterative fashion until a (local) optimal is achieved.

1.4 Summary of contributions

We now summarize our key contributions as follows:

1. We propose a novel community-based QoS assessment model that augments matrix fac-
torization with a principled constraint and the geometric structures of user and service
distributions (Sect. 3).

2. We develop an iterative algorithm, which amalgamates community construction and QoS
assessment into an integrated, mutually refining process (Sect. 4).

3. We prove the correctness and convergence of the proposed algorithm through a rigorous
theoretical analysis (Sect. 5).

4. We conduct an empirical study on real QoS data to demonstrate the effectiveness of the
proposed model and algorithm (Sect. 6).

2 Related work

In this section, we provide a detailed review of existing works that are most relevant to our
proposed CloudRec framework.

2.1 Cloud service and service selection

Cloud computing has attracted significant attention from both industry and academia. Leading
cloud vendors have provided different types of clouds, including infrastructure as a service
(IaaS) clouds, platform as a service (PaaS) clouds, and software as a service (SaaS) clouds.
The cloud computing market is expected to reach $270 billion by 2020 [1]. Important research
prototypes are also being developed in academia (e.g., epiC [9]) that moves key operations
such as OLTP and OLAP into the cloud [8,38]. Therefore, we anticipate the deployment of
a large number of cloud services and the competition between multiple cloud services that
offer similar functionalities. Selecting services with user-desired QoS from a large number of
competing service providers has received considerable attention from the service computing
community [39,40]. A number of cloud service selection techniques have also recently been
developed to help user choose the best cloud service from a large number of candidates [12,24,
33,37]. However, most approaches primarily rely on the QoS information provided by service
providers or service registries. More importantly, they do not consider the discrepancies
between different users and services and assume that different users will receive identical
QoS from same services.

123

CloudRec: a framework for personalized service recommendation in the cloud 421

2.2 Collaborative-filtering-based recommendation

Collaborative filtering (CF) has emerged as a key technology in e-commerce and online
content distribution [5,7,21,25,26]. CF exploits the similarity between users’ experiences to
predict user preference on unknown items. The intuitive idea is to identify “similar” users with
the active user and predict the active user’s preference based on these similar users’ feedbacks.
The similarity between two users is measured using the feedbacks on the common items.
Most existing CF approaches fall into two categories: neighborhood-based and model-based.
The neighborhood-based approaches suffer from the data scarcity issue that arises in practice
because a typical user may only provide feedbacks for a limited number of items. This is
even more serious in the cloud considering the large number of users and cloud services.
Users have to invoke at least two common cloud services in order to be considered as similar.
Model-based CF approaches alleviate feedback scarcity by generating a global model based
on the given training data and using the model to predict user preference on unknown items.
Typical models include aspect models [26], latent factor models [7], Bayesian models [42],
and decision trees [5]. A major issue with the existing model-based approaches is their
high computational overhead which is caused by the tuning of a large number of parameters
embedded in the models. This makes these models inapplicable to large-scale datasets, which
are typical for a cloud environment.

The proposed community-based QoS assessment model provides an effective means to
address data scarcity. More specifically, two users can be related by having invoked the ser-
vices in the same service community instead of having invoked the same service. Similarly,
two services can be related through users from the same user community instead of having
used by the same user. Our experimental results on real QoS data also clearly demonstrate
the effectiveness of the community-based approach in handling very sparse datasets. Further-
more, using matrix factorization, the communities can be more efficiently constructed [23]
and the workload can be easily parallelized to handle very large-scale QoS data [30].

CF has also been adopted for service selection in service computing community [35,44].
An augmented neighborhood-based approach is presented in [10] for personalized Web ser-
vice recommendation. A region model is constructed by explicitly integrating users’ geo-
graphical locations. Nevertheless, there is no direct relationship between the physical dis-
tances of users and services and QoS delivery. For instance, a remote user may get a fast
response if s/he is connected through a high-speed network.

2.3 Matrix factorization-based clustering

Matrix factorization-based approaches have been increasingly adopted for data clustering and
co-clustering due to their effectiveness in dealing with high-dimensional datasets. The SVD-
or eigenvector-based approaches are commonly used for matrix decomposition to generate
data clusters [14,19,36]. The basic idea is to project the original data space into a latent
semantic space, which is represented by singular vectors or eigenvectors. As singular vectors
or eigenvectors do not directly correspond to the individual clusters, traditional clustering
algorithms (e.g., K-means) need to be applied to generate the final clusters. Due to the
existence of the latent semantic space, it is usually difficult to interpret the clustering result.
To address this issue, nonnegative matrix factorization (NMF) techniques have been recently
applied to clustering with the benefit of providing an intuitive interpretation for the clustering
result [17,27,28]. It has been demonstrated that, under certain constraints, NMF clustering
is equivalent to some widely used clustering schemes, including k-means clustering [17],
spectral clustering [18], and probabilistic latent semantic indexing [29].

123

422 Q. Yu

NMF has also been exploited in recommendation systems to predict user ratings on
unknown items. In [41], a rating matrix A is factorized as U V , where each column vec-
tor U (i) ∈ U can be regarded as a user-cluster centroid and each column vector V (j) ∈ V
can be regarded as user j’s affinities for all user communities. In this regard, only users
are clustered in the proposed framework, which is different from the co-clustering scheme
used in our approach. In [23], nonnegative matrix tri-factorization (NMTF) is exploited
to co-cluster users and items. However, NMTF is not constrained. Therefore, it may lead
to arbitrary cluster assignment and the result does not offer any intuitive interpretation.
In addition, a weighting mechanism is adopted that minimizes a new objective function
||W � (F −U RST)||2F , where � is Hadamard product (i.e., element-wise product), Wi j is
set to one if Fi j is an observed entry and zero otherwise. As discussed in “Introduction,” this
approach only relies on the information carried by the observed entries, which may be very
limited.

3 The QoS assessment model

In this section, we first describe the basic community-based QoS assessment model. We then
present the principled constraint on matrix factorization and the integration of geometric
structures of user and service distributions as two key extensions of the basic model.

3.1 The basic model

The QoS assessment model is built around two sets of objects: users U = {u1, . . . , un} and
cloud services S = {s1, . . . , sm}. A dyad is a scalar value f (u, s) that is used to represent
the relationship between user u and service s, where u ∈ U and s ∈ S. This type of data
is usually known as dyadic data, which can be represented as an n-by-m two-dimensional
matrix F if we map the row indices into U and the column indices into S [31]. Each entry
Fi j represents the QoS that service s j delivered to user ui .

The premise behind the proposed model is that there exists a small number of latent
factors that influence users’ perception on the QoS delivered by the cloud services. Users and
services that share similar values on these latent factors can be assigned to a limited number
of user and service communities. We can then leverage these communities to predict users’
perception on QoS delivered by a priori unknown cloud services. In particular, we propose
to use NMTF to find a low-rank matrix Y as an approximation of the original matrix F , i.e.,
F ≈ Y , where Y can be factorized as Y = U RST . More specifically, U ∈ R

n×k is the cluster
indicator matrix for clustering users (i.e., rows of F), S ∈ R

m×l is the cluster indicator
matrix for clustering services (i.e., columns of F), R ∈ R

k×l is the cluster association
matrix that captures the relationship between user clusters and service clusters. Hence, NMTF
essentially simultaneously clusters U into k disjoint user communities (û1, . . . , ûk) and S
into l disjoint service communities (ŝ1, . . . , ŝl). Considering the dyadic nature of the data
space, co-clustering can effectively exploit the duality between rows and columns to improve
the clustering accuracy.

Let us now illustrate how the model can be used to derive user ui ’s perception on the QoS
delivered by an unknown cloud service s j . Recall that matrix R is the cluster association
matrix, where each entry Rpq essentially captures the QoS perception of user community
û p on service community ŝq . Since S is the service-cluster indicator matrix, ST

q j is the
cluster coefficient of service s j on service community ŝq . Thus, the QoS perception of user
community û p on service s j can be formulated as:

123

CloudRec: a framework for personalized service recommendation in the cloud 423

(RST)pj =
l∑

q=1

Rpq ST
q j (1)

We can view RST ∈ R
k×m as the matrix that contains the basis of the user space U , where

each entry (RST)pj captures the perception user community û p on cloud services s j . Since
Uip is the cluster coefficient of user ui on user community û p, ui ’s QoS perception on s j can
be formulated as:

Fi j ≈ Yi j =
k∑

p=1

Uip(RST)pj =
k∑

p=1

Uip

⎛

⎝
l∑

q=1

Rpq ST
q j

⎞

⎠ (2)

Equation (2) reveals that ui ’s QoS perception on s j is approximated by a linear combination
of all user communities’ QoS perception on s j , weighted by the cluster coefficients of ui on
these communities. More generally, each row vector fT

i of F can be approximated as a linear
combination of rows in the basis matrix RST , i.e.,

fT
i =

k∑

p=1

UipvT
p (3)

where vT
p is a row vector in the basis matrix RST . Therefore, uT

i , which is the i-th row of

U , can be regarded as the new representation of the i-th user in the new basis RST . Since
we have k � n and l � m in practice, we essentially use a small number of basis vectors
to represent a large number of user vectors. When the basis vectors can capture the intrinsic
latent structure of the data space, a good approximation can be achieved [28].

3.1.1 A scenario: setting up a cloud-based enterprise

In what follows, we describe a scenario to further illustrate the community-based model.
Consider the development of a cloud-based enterprise, TravelAssistant, which provides

travel assistance services for users, including map, weather, flight, and local attractions. The
most cost effective way to set up TravelAssistant is to mash up existing cloud resources to
create all functional layers of the enterprise, including data storage, system softwares, and
software services. Resources, such as storage and system softwares, are typically obtained
from large data centers, such as Amazon, Microsoft, and Google. The developer will face
much more choices in selecting software services as many software vendors expect to take
the key advantages of the cloud to make their services more attractive. For example, by
deploying a Point Of Interest (POI) service in the cloud, the POI service will be equipped
with the elastic computing power to handle the increased demand in the tourist season.

Since TravelAssistant is expected to be highly available and response fast to users’
requests, the challenge is to select cloud services that meet these QoS requirements. Assume
that the Map, Weather and FlightStats services have already been chosen as the developer
has used these three services and perceived satisfactory QoS. The remaining task now is to
select a POI service with the desired QoS (i.e., high availability and fast response time).

Assume that the QoS of the cloud services can be derived from the historical user–service
interactions (e.g., the transaction logs of these services). Table 1 shows the response times
received by six different users (including the developer) when interacting with the component
services of TravelAssistant and two candidate POI services. As the users may not interact
with all the services, n/a in Table 1 signifies that the user has not used the corresponding service

123

424 Q. Yu

Table 1 The user received
response times

Users Map Weather FlightStats POI1 POI2

U1
(i.e., developer)

3.072 2.24 1.984 n/a n/a

U2 2.688 2.56 1.216 1.472 2.752

U3 3.008 2.88 n/a 1.984 2.24

U4 1.536 1.024 2.56 2.048 1.664

U5 1.856 1.472 2.88 2.496 n/a

U6 1.664 1.856 2.688 n/a 1.216

and hence no response time is provided. Since NMTF is not applicable to an incomplete
matrix, we fill out the missing entries for the time being. The iterative algorithm is presented
in Sect. 4 to deal with an incomplete QoS matrix.

Equation (4) shows the result of NMTF. It is easy to tell that the first three rows of F , which
represent the developer and users U2 and U3 are grouped into the first user community û1

(because Ui,1 > Ui,2, where i ∈ {1, 2, 3}). The last three rows, representing users U4 ∼ U6,

are grouped into the second user community û2 (because Ui,1 < Ui,2, where i ∈ {4, 5, 6}).
Similarly, columns 1, 2, and 5, which represent Map, Weather, and POI2 services, are
grouped into the first service community ŝ1, and FlightStats and POI1 services are grouped
into the second service community ŝ2.

F ≈ U RST , where

F =

⎛

⎜⎜⎜⎜⎜⎜⎝

3.072 2.24 1.984 1.728 3.008
2.688 2.56 1.216 1.472 2.752
3.008 2.88 1.984 1.984 2.24
1.536 1.024 2.56 2.048 1.664
1.856 1.472 2.88 2.496 1.344
1.664 1.856 2.688 2.88 1.216

⎞

⎟⎟⎟⎟⎟⎟⎠
, U =

⎛

⎜⎜⎜⎜⎜⎜⎝

0.24 0.01
0.23 3.76× 10−7

0.22 0.04
1.8× 10−3 0.21
2.03× 10−4 0.24
6.55× 10−5 0.24

⎞

⎟⎟⎟⎟⎟⎟⎠
,

R =
(

20.75 43.19
36.17 24.61

)
, ST =

⎛

⎜⎜⎜⎜⎝

0.01 0.28
0.01 0.24
0.32 2.34× 10−4

0.30 5.0× 10−3

1.60× 10−4 0.25

⎞

⎟⎟⎟⎟⎠
(4)

3.1.2 The objective function

Since NMTF aims to find a low-rank matrix Y to approximate the QoS matrix F , a good
approximation requires that values in Y be close to the original values in F . We now derive
a formal objective function to evaluate the quality of the approximation matrix Y . Assume
that the QoS matrix and the approximation matrix are related via the following equation:

F = Y + Z (5)

where Z is the error matrix that captures the unmodeled latent factors or random noise
generated during the QoS delivery process. Furthermore, we assume that Z is a matrix of
i.i.d. (i.e., independently and identically distributed) zero-mean Gaussians with some constant
variance σ 2, i.e., Zi j ∼ N (0, σ 2). Therefore,

123

CloudRec: a framework for personalized service recommendation in the cloud 425

p(Zi j) = 1√
2πσ 2

exp

(
− Z2

i j

2σ 2

)
, which implies (6)

p(Fi j |Yi j) = 1√
2πσ 2

exp

(
− (Fi j − Yi j)

2

2σ 2

)
, and (7)

p(F |Y) =
∏

i, j

1√
2πσ 2

exp

(
− (Fi j − Yi j)

2

2σ 2

)
(8)

We want to maximize the probability of the QoS matrix F given Y that satisfies a set of con-
straints (i.e., finding the maximum likelihood). This is equivalent to find a Y that maximizes
log p(F |Y), which is evaluated as:

log p(F |Y) =
∑

i, j

log
1√

2πσ 2
exp

(
− (Fi j − Yi j)

2

2σ 2

)
(9)

= mn log
1√

2πσ 2
− 1

2σ 2

∑

i j

(Fi j − Yi j)
2 (10)

Since mn log 1√
2πσ 2

is a constant, the goal is to find a low-rank matrix Y = U RST that
minimizes the following objective function:

J (U, R, S) = ||F −U RST ||2F (11)

where || · ||F denotes Frobenius norm; U ∈ R
n×k+ , R ∈ R

k×l+ , S ∈ R
m×l+ , k � n, and

l � m. The nonnegative constraints ensure that a user vector is an additive combination of a
set basis vectors. This allows a more intuitive interpretation than other matrix factorization
approaches, such as Singular Value Decomposition (SVD), which allows negative values in
the matrix components.

3.2 The constrained NMTF

Directly applying NMTF discussed in Sect. 3.1 suffers a fundamental issue. That is,
if no other constraints are enforced, NMTF results in matrices U and S whose entries
can take arbitrary values. In this regard, entries in U and S are no longer able to
denote the cluster memberships of users and services. To attack this issue, we plan to
enforce a principled constraint on NMTF to ensure proper cluster assignment. Entries
in U and S under this constraint can be directly interpreted as the cluster posterior
probability.

To facilitate the illustration, we introduce two latent variables, zu
p ∈ {zu

1 , . . . , zu
k } and

zs
q ∈ {zs

1, . . . , zs
l }, which are cluster variables for users and services. p(zu

p|ui) (or p(zs
q |s j))

is the posterior probability on zu
p (or zs

q) given ui (or s j). We will use user-cluster indicator
matrix U as an example to explain the key ideas. The same rationale applies for the service-
cluster indicator matrix S.

Each entry Uip ∈ U is expected to reflect the membership of ui on user community û p .
If hard cluster membership is used, ui will be assigned to the user community û p , where
p = arg max(Ui1, . . . , Uik). As indicated in [16], a fundamental problem with this approach
is that it does not offer a unique cluster assignment. For example, given an arbitrary positive
diagonal matrix AU = diag(a1, . . . , ak), we have Y = (U AU)(A−1

U R)ST . This implies that
ui will be assigned to the user community û p , where p = arg max(Ui1a1, . . . , Uikak). Thus,
different AU will result in different user communities. Some existing approaches choose to

123

426 Q. Yu

use L2 normalization on rows of U [22], which helps achieve the uniqueness of the cluster
assignment. However, L2 normalization does not offer any intuitive interpretation of the
result.

Inspired by [16], we propose to use L1 normalization on rows of U . This approach not
only guarantees the uniqueness of the cluster assignment but also leads to a more intuitive,
posterior probability-based interpretation on the result. If we use Uip to approximate the
cluster conditional probability and choose AU = diag(a1, . . . , ak) such that ap is class prior
of cluster û p, Uipap is essentially the posterior probability2 and should follow the probability
normalization

∑k
p=1 Uipap = 1,∀i ∈ [1, n]. To get AU , we need to solve k variables with

n constraints. In reality, we have k � n, and therefore, it is not guaranteed to find a feasible
solution. To address this, we propose to perform posterior probabilistic clustering [16]. The
idea is to directly enforce posterior probability normalization (or L1 norm) constraint on the
rows of the cluster indicator matrices U and S. Integrating the L1 norm leads to the addition of
two constraints to the objective function specified in Eq. (11):

∑k
p=1 Uip = 1,

∑l
q=1 S jq =

1. As a result, L1 norm allows entries in U and S to be directly interpreted as cluster posterior
probability.

3.3 Neighborhood regularization

Recent studies reveal that many real-world data distribute on low-dimensional manifold
embedded in high-dimensional ambient space [4,34]. Therefore, it is desirable for the com-
munity structure derived from NMTF to respect the intrinsic geometry of the data distribution.
Assume that the users u ∈ U are sampled from a distribution PU and the services s ∈ S are
sampled from a distribution PS . We propose to improve the estimation of the cluster pos-
terior probability p(zu

p|ui) (or p(zs
q |s j)) by exploiting the distribution of PU (or PS). More

specifically, we expect that the posterior probability p(zu
p|ui) (or p(zs

q |s j)) changes smoothly
along the geodesics in the intrinsic geometry of the data distribution PU (or PS) [6]. That is,
if two users ua, ub ∈ PU are close neighbors in the geometrical structure of PU , the posterior
probabilities p(zu

p|ua) and p(zu
p|ub) are “similar” to each other. Intuitively, if two users are

in each other’s close neighborhood, it is reasonable to believe that the two users belong to
the same user community. In another word, if we know that two users share very similar QoS
experience, we expect that these two users to be assigned to the same user community. In this
regard, neighborhood regularization has the effect of integrating the model-based approach
(i.e., the proposed QoS assessment model) with a neighborhood-based approach to improve
the overall predictive accuracy.

In the sequel, we present a graph-based model to integrate the geometrical structure of
user and service data distributions to improve the overall clustering accuracy.

The first step is to construct a user graph, Gu = (V u, Eu), which captures the similarity
between different users. Each vertex vu

i represents a user ui . Two vertices are connected if
the similarity W u

i j between users ui and u j is larger than a certain threshold and the edge is
weighted by W u

i j . If two users ui and u j are similar (i.e., they have a large edge weight W u
i j

in the similarity graph), their corresponding cluster posteriors (e.g., Uip and U jp for cluster
û p) should be similar. Therefore, W u

i j (Uip − U jp)
2 is expected to be small for all i, j , and

p. This is equivalent to minimizing the following function,

2 Strictly speaking, we ignore p(ui) here as p(zu
p |ui) = Uipap/p(ui). For a given ui , p(ui) is a constant

for all clusters. Thus, we can just choose another diagonal matrix A′U = diag(a1/p(ui), . . . , ak/p(ui)) to
absorb the constant.

123

CloudRec: a framework for personalized service recommendation in the cloud 427

Ru =
k∑

p=1

Ru
p =

k∑

p=1

⎛

⎝1

2

n∑

i, j=1

W u
i j (Uip −U jp)

2

⎞

⎠

=
k∑

p=1

⎛

⎝
n∑

i=1

Du
ii U

2
i p −

n∑

i, j=1

W u
i j UipU jp

⎞

⎠

=
k∑

p=1

⎛

⎝
n∑

i=1

uT
p Du

ii up −
n∑

i, j=1

uT
p W u

i j up

⎞

⎠

=
k∑

p=1

(
uT

p Duup − uT
p W uup

)

=
k∑

p=1

uT
p Luup

= Tr(U T LuU) (12)

where up is a column vector in U , Lu = Du−W u is the graph Laplacian of the user similarity
graph and Du is the degree matrix with Du

ii =
∑

j W u
i j . An effective way of using this to

enhance the clustering accuracy is to integrate Ru as a regularizer into the original objective
function specified in Eq. (11).

The only remaining problem is how to evaluate the similarity between users. This can be
done by using the existing neighborhood-based CF approaches using distance functions, such
as Pearson correlation or cosine distance. Since we essentially focus on the local geometrical
structure of the user data distribution, we define the edge weight matrix W u as follows:

W u
i j =

{
1, if ui ∈ Ut (u j) or u j ∈ Ut (ui)

0, otherwise.
(13)

where Ut (u j) is a set of top-t nearest neighbors of ui .
Following the same rationale, we formulate the following function for service clusters:

Rs =
l∑

q=1

Rs
q = Tr(ST Ls S) (14)

where Ls = Ds −W s is the graph Laplacian of the service similarity graph, W s is the edge
weight matrix, and Ds is the degree matrix with Ds

ii =
∑

j W s
i j . Similarly, we define the

edge weight matrix W s for the service similarity graph as follows:

W s
i j =

{
1, if si ∈ St (s j) or s j ∈ St (si)

0, otherwise.
(15)

where St (s j) is a set of top-t nearest neighbors of si .

3.4 The overall objective function

Incorporating both L1 norm constraint and neighborhood regularization, we achieve an inte-
grated QoS assessment model. The model is underpinned by a regularized posterior proba-
bilistic nonnegative matrix factorization (RPPNMTF). The optimal community structure can
be obtained by solving the following optimization problem:

123

428 Q. Yu

JR P P N M F = ||F −U RST ||2F + αuTr(U T LuU)+ αsTr(ST Ls S)+ βu ||Ue− e||
+βs ||Se− e|| s.t. U ≥ 0, S ≥ 0, G ≥ 0

We convert constraints
∑k

p=1 Uip = 1 and
∑l

q=1 S jq = 1 into penalty terms, βu ||Ue− e||2
and βs ||Se − e||2, where βu, βs ≥ 0 are L1 normalization penalty parameters. e is a vector
of all 1’s. αu, αs ≥ 0 are regularization parameters.

4 The iterative algorithm

The QoS assessment model aims to find a low-dimensional matrix Y to maximize log-
likelihood log p(F |Y). Since the QoS matrix F contains missing entries, it is not feasible to
directly maximize the log-likelihood log p(F |Y). The iterative algorithm instead maximizes
the expectation of log-likelihood log p(F |Y) given the observed entires in F (denoted as
Fo) and the current estimate of unobserved entries of F (denoted as Fu). In this regard,
the iterative algorithm follows a similar rationale as the expectation–maximization (EM)
strategy. In each iteration, the algorithm either estimates the missing QoS entries or finds an
optimal community structure based on the estimated QoS entries. More specifically, in QoS
estimation, it derives the expression of the expected log-likelihood log p(F |Y) and uses this
expectation to estimate the missing entries in F ; in community construction, it chooses Y ∗
to maximize the expectation. In this regard, the community structure and the missing QoS
values are iteratively refined through these two steps until the algorithm converges.

4.1 QoS estimation

Assume that the estimate for Y at the end of the pth step is Y (p). The expected log-likelihood
log p(F |Y) given the observed entries in the target matrix F and the current estimate Y (p)

is defined as:

Q(Y, Y (p)) = E[log p(F |Y)|Fo, Y (p)] (16)

Matrix F contains both observed entries (Fi j ∈ Fo) and unobserved entires (Fi j ∈ Fu). We
compute them separately and then aggregate the results. For any observed Fi j ∈ Fo,

log p(Fi j |Yi j) = log
1√

2πσ 2
− 1

2σ 2 (Fi j − Yi j)
2 (17)

Thus,

log p(Fo|Y) =
∑

Fi j∈Fo

(
log

1√
2πσ 2

− 1

2σ 2 (Fi j − Yi j)
2
)

(18)

For any unobserved entry Fi j ∈ Fu , we find

E[log p(Fi j |Yi j)|Fo, Y (p)]
= E

Fi j∼N (Y (p)
i j ,σ 2)

[
log p(Fi j |Yi j)

]

= log
1√

2πσ 2
− 1

2σ 2 E
Fi j∼N (Y (p)

i j ,σ 2)

[
(Fi j − Yi j)

2]

= log
1√

2πσ 2
− 1

2σ 2

(
E[F2

i j] − 2E[Fi j]Yi j + Y 2
i j

)

123

CloudRec: a framework for personalized service recommendation in the cloud 429

= log
1√

2πσ 2
− 1

2σ 2

(
σ 2 + Y (p)2

i j − 2Y (p)
i j Yi j + Y 2

i j

)

=
(

log
1√

2πσ 2
− 1

2

)
− 1

2σ 2

(
Y (p)

i j − Yi j

)2

Thus, we have

E[log p(F |Y)|Fo, Y (p)] =
∑

Fi j∈Fu

((
log

1√
2πσ 2

− 1

2

)
− 1

2σ 2

(
Y (p)

i j − Yi j

)2
)

(19)

Finally, put together Eqs. (18) and (19), we find

Q(Y, Y (p)) = E[log p(F |Y)|Fo, Y (p)]

= − 1

2σ 2

⎛

⎝
∑

Fi j∈Fo

(
Fi j − Yi j

)2 +
∑

Fi j∈Fu

(
Y (p)

i j − Yi j

)2

⎞

⎠+ C

where C = mn log
1√

2πσ 2
− |F

u |
2

is a constant.

4.2 Community construction

As implied by the above QoS estimation procedure, matrix F can be completed as follows
at the end of the p-th step:

∀F (p)
i j ∈ Fo, F (p)

i j = Fi j , (20)

∀F (p)
i j ∈ Fu, F (p)

i j = Y (p)
i j (21)

Now, having a completed matrix F , an optimal community structure can be obtained
by finding matrices U∗, R∗, and S∗ to minimize objective function JR P P N M F in Eq. (16).
Although JR P P N M F is convex in U, R, and S respectively, it is not convex in all of them
together. We introduce an iterative algorithm based on a set of efficient update rules for U, R,
and S. In each iteration, U, R, and S are updated alternatively, i.e., when one matrix is being
updated, others are fixed. The updates continue until a local optimal is achieved. In what
follows, we introduce the update rules for U, R, and S, respectively.

4.2.1 Updating U

We use the following function JU to denote the part of JR P P N M F that is only relevant to U .
Therefore, minimizing JR P P N M F with respect to U is equivalent to minimizing JU .

JU = ||F −U RST ||2F + αuTr(U T LuU)+ βu ||Ue− e||2 s.t. U ≥ 0

To deal with the nonnegative constraint on U , we introduce the Lagrange multiplier
�u ∈ R

n×k and we have the following Lagrangian function:

L(U) = ||F −U RST ||2F + αuTr(U T LuU)+ βu ||Ue− e||2 + Tr(�uU T)

= Tr(FT F − 2U T F S RT +U T U RST S RT)+ αuTr(U T LuU)+ β ′uTr(U T U E ET

− 2U T E ET + ET E)+ Tr(�uU T) (22)

where E ∈ R
k×k is a matrix of all 1’s, β ′u = βu/k. We use the fact βu ||Ue − e||2 =

β ′u ||U E − E ||2 for the above derivation.

123

430 Q. Yu

The partial derivative of L(U) with respect to U is as follows:

∂L(U)

∂U
= −2F S RT + 2U RST S RT + 2αu LuU + 2βu(U E − E)+�u (23)

Using the KKT complementarity condition for the nonnegativity �u
ipUip = 0, we have

(
−2F S RT + 2U RST S RT + 2αu LuU + 2βuU E − 2βu E

)

i p
Uip = 0 (24)

Equation (24) leads to the following update rule for U :

Uip ← Uip

(
(F S RT)i p + βu(

αu LuU + βuU E +U RST S RT
)

i p

) 1
2

(25)

4.2.2 Updating S

We can derive the update rule for S in a pretty similar manner. We use the following function
JS to denote the part of JR P P N M F that is only relevant to S. Therefore, minimizing JR P P N M F

with respect to S is equivalent to minimizing JS .

JS = ||F −U RST ||2F + αsTr(ST Ls S)+ βs ||Se− e||2 s.t. S ≥ 0 (26)

We have the following Lagrangian function by introducing the Lagrange multiplier �s ∈
R

m×l :

L(S) = ||F −U RST ||2F + αsTr(ST Ls S)+ βs ||Se− e||2 + Tr(�s ST) (27)

= Tr(FT F − 2ST FT U R + ST S RT U T U R)+ αsTr(ST Ls S)+ β ′sTr(ST SE ET

− 2ST E ET + ET E)+ Tr(�s ST) (28)

where E ∈ R
l×l is a matrix of all 1’s, β ′s = βs/ l.

The partial derivative of L(S) with respect to S is as follows:

∂L(S)

∂S
= −2FT U R + 2S RT U T U R + 2Ls S + 2βs(SE − E)+�s (29)

Using the KKT complementarity condition for the nonnegativity �s
jq S jq = 0, we have

(
−2FT U R + 2S RT U T U R + 2Ls S + 2βs SE − 2βs E

)

jq
S jq = 0 (30)

Equation (30) leads to the following update rule for S:

S jq ← S jq

(
(FT U R) jq + βs(

αs Ls S + βs SE + S RT U T U R
)

jq

) 1
2

(31)

4.2.3 Updating R

The following function JR only contains the part of JR P P N M F that is relevant to R. Therefore,
minimizing JR P P N M F with respect to R is equivalent to minimizing JR .

JR = ||F −U RST ||2F s.t. S ≥ 0 (32)

123

CloudRec: a framework for personalized service recommendation in the cloud 431

We have the following Lagrangian function by introducing the Lagrange multiplier �r ∈
R

k×l :

L(R) = ||F −U RST ||2F + Tr(�r RT) (33)

The partial derivative of L(R) with respect to R is as follows:

∂L(R)

∂ R
= −2U T F S + 2U T U RST S +�r (34)

Using the KKT complementarity condition for the nonnegativity �s
pq Rpq = 0, we have

(
−2U T F S + 2U T U RST S

)

pq
Rpq = 0 (35)

Equation (35) leads to the following update rule for R:

Rpq ← Rpq

(
(U T F S)pq(

U T U RST S
)

pq

) 1
2

(36)

5 Theoretical analysis

We prove the correctness and the convergence of the proposed iterative algorithm in this
section. We also provide a brief analysis of the time complexity.

Theorem 1 If the solution converges based on the update rules in Eqs. 25, 31, and 36, the
solution satisfies the KKT optimality condition.

Proof At convergence, the values of U, R, and S will no longer change. Thus, we have

Uip = Uip

(
(F S RT)i p + βu(

αu LuU + βuU E +U RST S RT
)

i p

) 1
2

(37a)

S jq = S jq

(
(FT U R) jq + βs(

αs Ls S + βs SE + S RT U T U R
)

jq

) 1
2

(37b)

Rpq = Rpq

(
(U T F S)pq(

U T U RST S
)

pq

) 1
2

(37c)

Equation in (37) are equivalent to the following three Eq. in (38), respectively.
(
−2F S RT + 2U RST S RT + 2αu LuU + 2βuU E − 2βu E

)

i p
U 2

i p = 0 (38a)
(
−2FT U R + 2S RT U T U R + 2Ls S + 2βs SE − 2βs E

)

jq
S2

jq = 0 (38b)
(
−2U T F S + 2U T U RST S

)

pq
Rpq = 0 (38c)

The above three equations are essentially equivalent to the KKT complimentary conditions
specified by Eqs. 24, 30, and 35. �

123

432 Q. Yu

We now prove the convergence of the iterative algorithm. The update rules are derived for
minimizing a auxiliary function, which is an convex upper bound for the original objection
function [27]. In order to proceed with the proof, we first provide some important background
information regarding the auxiliary function.

Definition 1 (Auxiliary function [27]) Z(X, X ′) is an auxiliary function of function J (X) if
it satisfies the following two conditions for any X and X ′.

(1) Z(X, X ′) ≥ J (X) (2) Z(X, X) = J (X)

Lemma 1 J is nonincreasing under the following update rule if Z is an auxiliary function
of J :

X (t+1) = arg min
X

Z(X, X (t)) (39)

Proof

J (X (t)) = Z(X (t), X (t)) ≥ Z(X (t), X (t+1)) ≥ J (X (t+1))

�
Lemma 2

Z(U, Ũ) = ||F ||2 + nβu −
∑

i p

2(F S RT)i pŨip

(
1+ log

Uip

Ũip

)

+
∑

i p

(
Ũ RST S RT

)

i p
U 2

i p

Ũip
+ αu

∑

i p

(
LuŨ

)

i p
U 2

i p

Ũip

+βu

∑

i p

(
[Ũe]i

U 2
i p

Ũip

)
− βu

∑

i p

2Ũip

(
1+ log

Uip

Ũip

)

is an auxiliary function for

J (U) = ||F −U RST ||2F + αuTr(U T LuU)+ βu ||Ue− e||2,
which is the part of JN RN M F that is relevant to U. Z(U, Ũ) is also convex in U and its
global minimum is

Uip = Uip

(
(F S RT)i p + βu(

αu LuU + βuU E +U RST S RT
)

i p

) 1
2

. (40)

Proof To prove Lemma 2, we first derive the upper bounds for the three terms in J (U),
respectively. We then combine them together.

To derive the upper bound for ||F −U RST ||2F , we need the following two inequalities:

x ≥ 1+ log(x), ∀x > 0 (41a)

n∑

i=1

k∑

p=1

(AC̃ B)i pC2
i p

C̃ip
≥ Tr(CT AC B) (41b)

123

CloudRec: a framework for personalized service recommendation in the cloud 433

(41b) is derived in [17], which holds for any matrices A ∈ R
n×n+ , B ∈ R

k×k+ , C ∈ R
n×k+ , C̃ ∈

R
n×k+ , and A, B are symmetric.

||F −U RST ||2F = Tr(FT F − 2U T F S RT +U T U RST S RT) (42)

Using (41a) and setting x = Uip

Ũip
, we have

Tr(U T F S RT) ≥
∑

i p

(F S RT)i pŨip

(
1+ log

Uip

Ũip

)
(43)

Using (41b) and setting A = I, B = RST S RT , C = U, C̃ = Ũ , we have

Tr(U T U RST S RT) ≤
∑

i p

(
Ũ RST S RT

)

i p
U 2

i p

Ũip
(44)

Using (41b) and setting A = Lu, B = I, C = U, C̃ = Ũ , we can derive the upper bound of
αuTr(U T LuU) as

αuTr(U T LuU) ≤ αu

∑

i p

(
LuŨ

)

i p
U 2

i p

Ũip
(45)

To derive the upper bound for βu ||Ue − e||2, we use Jensen’s inequality and the convexity
of the quadratic function.

βu ||Ue− e||2 = βu

n∑

i=1

⎛

⎝
k∑

p=1

Uip − 1

⎞

⎠
2

(46a)

= βu

n∑

i=1

⎛

⎝
k∑

p=1

Ũip

[Ũe]i
−

k∑

p=1

Ũip

[Ũe]i
[Ũe]i
Ũip

Uip

⎞

⎠
2

(46b)

≤ βu

n∑

i=1

k∑

p=1

Ũip

[Ũe]i

(
[Ũe]i
Ũip

Uip − 1

)2

(46c)

= βu

n∑

i=1

k∑

p=1

(
[Ũe]i
Ũip

U 2
i p − 2Ũip

Uip

Ũip

)
+

n∑

i=1

1 (46d)

≤ βu

∑

i p

(
[Ũe]i

U 2
i p

Ũip

)
− βu

∑

i p

2Ũip

(
1+ log

Uip

Ũip

)
+ nβu (46e)

Combining the upper bounds for three terms in J (U), we obtain Z(U, Ũ). It is obvious that
Z(U, Ũ) ≥ J (U) and Z(U, U) = J (U). Thus, Z(U, Ũ) is an auxiliary function of J (U).

123

434 Q. Yu

To find a local minimum of Z(U, Ũ), we take the partial derivative of Z(U, Ũ) with
respect to Uip and get

∂ Z(U, Ũ)

∂Uip
= −2(F S RT)i p

Ũ 2
i p

Uip
+ 2

(
Ũ RST S RT

)

i p

Uip

Ũip

+ 2αu

(
LuŨ

)

i p

Uip

Ũip
+ 2βu(Ũ E)i p

Uip

Ũip
− 2βu

Ũ 2
i p

Uip
(47)

We set ∂ Z(U,Ũ)
∂Uip

= 0 and solve for U , from which we can get Eq. (40). The only remaining

question is to prove that Z(U, Ũ) is convex in U so that the local minimum is indeed the
global minimum. To achieve this, we compute the Hessian matrix for Z(U, Ũ):

∂2 Z(U, Ũ)

∂Uip∂Uab
= δiaδpb

⎛

⎜⎝2(F S RT)i p
Ũ 2

i p

U 2
i p

+ 2

(
Ũ RST S RT

)

i p

Ũip

+ 2
αu

(
LuŨ

)

i p

Ũip
+ 2

βu(Ũ E)i p

Ũip
+ 2βu

Ũ 2
i p

U 2
i p

⎞

⎟⎠ (48)

The Hessian matrix is a diagonal matrix with positive diagonal elements. Thus, Z(U, Ũ) is
convex in U so that the local minimum we computed above is also the global minimum. �
Lemma 3

Z(S, S̃) = ||F ||2 + mβs −
∑

jq

2(FT U R) jq S̃ jq

(
1+log

S jq

S̃ jq

)
+

∑

jq

(
S̃ RT U T U R

)

jq
S2

jq

S̃ jq

+αs

∑

jq

(
Ls S̃

)

jq
S2

jq

S̃ jq
+ βs

∑

jq

(
[S̃e]i

S2
jq

S̃ jq

)
− βs

∑

jq

2S̃ jq

(
1+ log

S jq

S̃ jq

)

is an auxiliary function for

J (S) = ||F −U RST ||2F + αsTr(ST Ls S)+ βs ||Se− e||2,
which is the part of JN RN M F that is relevant to S. Z(S, S̃) is also convex in S and its global
minimum is

S jq = S jq

(
(FT U R) jq + βs(

αs Ls S + βs SE + S RT U T U R
)

jq

) 1
2

(49)

Proof Similar to the proof of Lemma 2. �
Lemma 4

Z(R, R̃) = ||F ||2 −
∑

pq

2(U T F S)pq R̃pq

(
1+ log

Rpq

R̃pq

)
+

∑

pq

(
U T U R̃ST S

)

pq
R2

pq

R̃pq

123

CloudRec: a framework for personalized service recommendation in the cloud 435

is an auxiliary function for

J (R) = ||F −U RST ||2F ,

which is the part of JN RN M F that is relevant to R. Z(R, R̃) is also convex in R and its global
minimum is

Rpq = Rpq

(
(U T F S)pq(

U T U RST S
)

pq

) 1
2

(50)

Proof Similar to the proof of Lemma 2. �
Theorem 2 When two matrices of U, R, S are fixed, JN RN M F decreases monotonically and
hence converges under the update rules of Eqs. (25), (36), and (31).

Proof Assume R and S are fixed and we prove that J (U), which is the part of JN RN M F that
is only relevant to U , decreases monotonically under update rule of Eq. (25). By Lemmas 1
and 2, we have

J (U (0)) = Z(U (0), U (0)) ≥ Z(U (1), U (0)) ≥ J (U (1)) ≥ . . .

Thus, JN RN M F is nonincreasing when updating U with R, S fixed. Alternatively, when
U, R or U, S are fixed, JN RN M F is nonincreasing under update rules of Eqs. (31), and (36),
respectively. Since JN RN M F is bounded below, it converges under these update rules. �
5.1 Time complexity

The time complexity of performing RPP-NMF is in the order of O(mn), where m and n are
the number of services and users, respectively. More specifically, assume that the iterative
algorithm stops after t1 iterations. In each iteration, t2 steps are required for updating U, R, and
S to find (local) optimal communities. Thus, the overall complexity will be O(t1t2(k+l)mn),
where k and l are the number of user and service communities, respectively.

6 Framework evaluation

In this section, we use a case study and extensive experiments to evaluate the effectiveness
of the proposed CloudRec framework.

6.1 Case study

The case study aims to illustrate how the proposed QoS assessment model and the prediction
algorithm can be used for service recommendation. We continue to use the TravelAssistant
scenario as discussed in Sect. 3.1.1. As there are multiple candidate POI services, the goal
is to estimate the response times of these two services with respect to the developer and
recommend the most efficient one.

We apply RPPNMF to the example QoS data as shown in Table 1. The result also helps
demonstrate the effectiveness of the iterative algorithm in handling incomplete QoS data. As
shown in Eq. (51), the same user and service clusters are generated as in Eq. (4) where the
complete QoS matrix is used. Based on the community information, the response times that
the developer uses to invoke POI1 and POI2 are predicted as 2.03 and 2.45 s, respectively. It

123

436 Q. Yu

is worth to note that correctly predicting the relative order on the QoS delivered by the cloud
services will be sufficient to help users select their desired services. Based on the estimation
result, POI1 will be recommended to the developer. The recommendation result is accurate
because the same service will be recommended if the actual response times (i.e., 1.728 and
3.008 s, respectively) of the candidate POI services are known in advance.

6.2 Experiment datasets

We conduct a set of experiments to evaluate the effectiveness of the proposed QoS assessment
model and the iterative algorithm. The experiments are conducted on two real-world QoS
datasets obtained from [43,44,46]:

• Dataset_1: This dataset consists of 1.5× 104 Web service invocation results on 100 Web
services from 150 “users.”

⎛

⎜⎜⎜⎜⎜⎜⎝

3.072 2.24 1.984 n/a n/a
2.688 2.56 1.216 1.472 2.752
3.008 2.88 n/a 1.984 2.24
1.536 1.024 2.56 2.048 1.664
1.856 1.472 2.88 2.496 n/a
1.664 1.856 2.688 n/a 1.216

⎞

⎟⎟⎟⎟⎟⎟⎠

F

≈

⎛

⎜⎜⎜⎜⎜⎜⎝

0.41 0.24
0.53 0.07
0.46 0.21
0.04 0.44
0.04 0.51
0.06 0.46

⎞

⎟⎟⎟⎟⎟⎟⎠

U

(
24.76 1.68
13.35 18.71

)

R

×

⎛

⎜⎜⎜⎜⎝

0.20 0.03
0.18 0.01
0.04 0.27
0.07 0.20
0.17 0.02

⎞

⎟⎟⎟⎟⎠

T

S

(51)

• Dataset_2: This dataset consists of 1, 974, 675 Web service invocation results on 5,825
Web services from 339 “users.”

We choose these real-world QoS datasets for evaluation because they capture the discrep-
ancies on both the user and the service sides. More specifically, the users are simulated by
the computing nodes from the PlanetLab wide area network,3 where these computing nodes
may come with different hardware/software configurations and are distributed across multi-
ple counties. Similarly, the services are developed within different development environment
and deployed on different servers across a large number of countries. These datasets clearly
show that users actually receive significant different QoS from the same services.

6.3 Experiment design and parameter setting

We organize the 1.5× 104 RTT (round-trip time in seconds) records in the Dataset_1 into a
150 × 100 matrix, where each row represents a user and each column represents a service.
This RTT matrix will be used as the QoS matrix F in our QoS assessment model. Since
a lot of QoS data may be missing in a real-world setting, we randomly remove 75–95 %
RTT records and use them as the testing set. The rest are used as the training set to build
the communities. We then compare the removed RTT entries with the predicted values to
evaluate the effectiveness of QoS assessment. The 1, 974, 675 RTT records in Dataset_2 are
organized into a 339× 5, 825 matrix and then same setting applies for evaluations.

To further demonstrate the effectiveness of the proposed CloudRec framework, we also
implement two competitive model-based collaborative-filtering algorithms and apply them

3 http://www.planet-lab.org/.

123

http://www.planet-lab.org/

CloudRec: a framework for personalized service recommendation in the cloud 437

to the QoS datasets. These algorithms include weighted nonnegative matrix factorization
(WNMF) [41] and graph-regularized weighted nonnegative matrix tri-factorization (GWN-
MTF) [23]. For WNMF, we conduct matrix tri-factorization instead of just two-factor factor-
ization. As discussed in the introduction, tri-factorization performs co-clustering on columns
and rows and tends to generate better results than one-side clustering. We also include the
classical neighborhood-based approach, which locates similar users based on the commonly
invoked services and then uses these users’ QoS to make the prediction. Since Pearson corre-
lation coefficient is used to evaluate the similarity between users, we refer to this algorithm as
u_PCC. To assess the impact of L1 normalization and neighborhood regularization, respec-
tively, we implement two alternative versions of RPPNMF, where in RPPNMF (neighbor
only), the penalty parameters βu and βs are set to 0, and in RPPNMF (L1 norm only), the
regularization factor αu and αs are set to 0.

We use mean absolute error (MAE) and root mean square error (RMSE) for result evalu-
ation and comparison between different approaches. These are widely employed metrics to
measure the quality of recommendation systems, which are defined as follows:

MAE =
∑

i, j |Fi j − Yi j |
N

(52)

RMSE =
√∑

i, j (Fi j − Yi j)2

N
(53)

where N denotes the total number of predicted QoS values. We perform k-means clustering
to initialize matrices U and S. R is initialized as U T F S [17]. Since entries are randomly
selected and removed to create an incomplete QoS matrix F , the algorithms are run 20 times
and the average MAE and RMSE are reported.

6.4 MAE performance comparison

Table 2 reports the MAE and RMSE performance of different approaches on the Dataset_1.
The testing size refers to the percentage of missing entries in F . For GWNTMF [23], we set
the two regularization factors μ and λ as 10 and the number is determined through the best
result of a set of trail runs. To reduce parameter tuning, we set αs = αu = α, βu = βs = β.
In RPPNMF, α = 10 and β = 5; in RPPNMF (neighbor only), α = 10; and in RPPNMF (L1

norm only), β = 5. The number of nearest neighbors in Eqs. (13) and (15) is set as 10. The
numbers of user and service communities are both set to 28, i.e., k = l = 28. We investigate
the effect of number of communities via another set of experiments.

Table 2 MAE and RMSE performance on dataset_1

Evaluation metric MAE RMSE

Test size (%) 75 80 85 90 95 75 80 85 90 95

WNMTF 0.74 0.80 n/a n/a n/a 0.82 0.84 n/a n/a n/a

GWNMTF 0.71 0.76 n/a n/a n/a 0.86 0.87 n/a n/a n/a

u_PCC 0.77 0.85 1.01 1.25 1.67 1.83 1.95 2.23 2.72 3.54

RPPNMF 0.68 0.69 0.69 0.69 0.99 0.79 0.77 0.76 0.76 1.11

RPPNMF (neighbor) 0.69 0.76 n/a n/a n/a 0.82 0.84 n/a n/a n/a

RPPNMF (L1 norm) 0.69 0.70 0.68 0.72 2.12 0.81 0.76 0.77 0.80 2.50

123

438 Q. Yu

Table 3 P values of the paired t test on the MAE performance

Evaluation metric P values

Test size (%) 75 80 85 90 95

WNMTF 1.46× 10−6 3.11× 10−7 n/a n/a n/a

GWNMTF 1.36× 10−6 1.46× 10−6 n/a n/a n/a

u_PCC 1.65× 10−8 1.62× 10−7 1.33× 10−16 4.88× 10−18 7.4× 10−12

RPPNMF (neighbor) 2.12× 10−6 4.72× 10−7 n/a n/a n/a

RPPNMF (L1 norm) 0.14 0.90 0.81 7.74× 10−4 2.48× 10−5

Table 4 MAE and RSME performance on dataset_2

Evaluation metric MAE RSME

Test size (%) 75 80 85 90 95 75 80 85 90 95

WNMTF 0.060 0.068 0.072 0.082 0.072 0.097 0.104 0.105 0.116 0.085

GWNMTF 0.046 0.051 0.057 0.066 0.071 0.059 0.061 0.068 0.075 0.080

RPPNMF 0.044 0.046 0.050 0.056 0.064 0.050 0.052 0.057 0.063 0.069

RPPNMF (neighbor) 0.046 0.051 0.057 0.065 0.071 0.058 0.061 0.071 0.074 0.079

RPPNMF (L1 norm) 0.062 0.068 0.074 0.074 0.069 0.089 0.098 0.120 0.101 0.079

We test the MAE and RMSE performance by varying the percentage of missing entries
in F from 75 to 95 %. We have the following key observations. First, RPPNMF consis-
tently generates the best results over different sparsity ratios with only few exceptions. Sec-
ond, among all the cases where RPPNMF does not report the best result, RPPNMF (L1

norm only) generates the best result for all of them. This also justifies the effectiveness of
L1 normalization. Third, as the dataset becomes more sparse, other algorithms either fail
to converge or produce much worse results. The obvious performance advantage of RPP-
NMF over other algorithms on the sparse datasets demonstrates its effectiveness in dealing
with the data sparsity issue, which makes it especially suitable for QoS assessment in the
cloud.

To show that the prediction performance of RPPNMF is indeed different those of other
algorithms, a paired t test has been performed between RPPNMF and the five other algo-
rithms, respectively. The P values are computed for testing the null hypothesis that the means
of the paired observations on the MAE performance4 are equal. The alpha level is chosen as
0.05. It can be observed from Table 3 that small P values have been obtained, indicating the
algorithms are not equal for most cases. For less sparse datasets, RPPNMF (L1 norm only)
has similar predictive performance as RPPNMF, which is evidenced through the relatively
high P values.

To demonstrate how the proposed model and algorithm scale to a large number of users
and services, Table 4 reports the MAE and RMSE performance on Dataset_2. We did not
include the neighborhood-based algorithm in this dataset because such algorithms need to
perform a similarity search for each individual user and hence run very slow for a large
dataset. Since we have already demonstrated the performance advantage of RPPNMF over
the neighborhood-based algorithms and these algorithms are known to suffer from the data

4 The P values for the RMSE show a similar result so we skip them to avoid redundancy.

123

CloudRec: a framework for personalized service recommendation in the cloud 439

sparsity issue, we focus on comparing model-based algorithms using Dataset_2. As both
RPPNMF and other baseline algorithms rely on the clustering of users and services to make
the QoS prediction, we perform a column normalization on the data matrix to avoid that the
clustering result is dominated by columns or rows with very large values.

We keep all the experimental setting as in Dataset_1 except for changing the numbers of
user and services clusters to 80 as much larger number of users and services are involved
in this dataset. The MAE and RMSE performance is consistent with that from Dataset_1.
RPPNMF achieves the best performance over different sparsity ratios. The normalization has
also been demonstrated to be effective as all the algorithms converge for Dataset_2.

6.5 Impact of the model parameters

We study the impact of different model parameters in this section, including the number of
communities, the regularization factor, and the normalization penalty factor. These experi-
ments are conducted on Dataset_1 as the results from Dataset_2 show a similar trend. Since
the RMSE performance is consistent with the MAE performance, we only report the latter
to avoid redundancy.

6.5.1 Impact of the number of communities

The number of communities plays a key role in addressing the data sparsity problem. As it
is shown in Fig. 1, when missing entries are below 40 % in the target matrix F , the MAE
performance fluctuates with k, l. On the other hand, when the missing entries are over 60 %
in the target matrix F , the MAE performance consistently increases as k, l increase. This
is because as the number of communities increases, more compact communities will be
generated, which only contain highly similar users and services. Since only a small number
of highly relevant QoS data will be used for prediction, it is helpful to reduce the error that
may be introduced by imprecise data. Imprecise data may be very common in a sparse dataset
because the missing data are typically obtained through estimation. Due to this reason, we
suggest to generate more compact communities (i.e., the community size is smaller than the
natural community size) for very sparse datasets in order to improve the prediction accuracy.
However, this does not apply to less sparse datasets. Since most data are present and precise,
more data can be used in a large community to achieve better perdition. On the other hand,
one may not want to generate overly large communities because more irrelevant data may
be involved that affect the prediction performance. Therefore, for less sparse datasets, it is
better to stick to the sizes of natural communities.

Figure 2 shows the effect of different numbers of user and service communities. To reduce
the burden of specifying multiple algorithm parameters, we assume the same number of user
and service communities in our previous experiments. In this set of experiments, we fix

8 12 16 20 24 28
0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

k,l

M
A

E

test_size = 20%, α=10, β=5

WNMTF
GWNMTF
RPPNMF
RPPNMF(Neighbor)
RPPNMF(L

1
 norm)

8 12 16 20 24 28
0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

k,l

M
A

E

test_size = 40%, α=10, β=5

WNMTF
GWNMTF
RPPNMF
RPPNMF(Neighbor)
RPPNMF(L

1
 norm)

8 12 16 20 24 28

0.65

0.7

0.75

0.8

0.85

k,l

M
A

E

test_size = 60%, α=10, β=5

WNMTF
GWNMTF
RPPNMF
RPPNMF(Neighbor)
RPPNMF(L

1
 norm)

8 12 16 20 24 28

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

k,l

M
A

E

test_size = 80%, α=10, β=5

WNMTF
GWNMTF
RPPNMF
RPPNMF(Neighbor)
RPPNMF(L

1
 norm)

Fig. 1 Effect of the number of user and service communities, k, l

123

440 Q. Yu

Fig. 2 Effect of different number
of user and service communities

0 0.5 1 1.5 2 2.5 3
0.65

0.7

0.75

0.8

0.85

0.9

l/k

M
A

E

test_size = 80%, k=30

0.1 1 10 100
0.48

0.485

0.49

0.495

0.5

0.505

0.51

0.515

0.52

α

M
A

E

test_size = 20%, k = 12

WNMTF
GWNMTF
RPPNMF
RPPNMF(Neighbor)

0.1 1 10 100

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65
0.66

α

M
A

E

test_size = 40%, k = 12

WNMTF
GWNMTF
RPPNMF
RPPNMF(Neighbor)

0.1 1 10 100
0.7

0.72

0.74

0.76

0.78

0.8

0.82

α

M
A

E
test_size = 60%, k = 12

WNMTF
GWNMTF
RPPNMF
RPPNMF(Neighbor)

0.1 1 10 100
0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9
0.92

α

M
A

E

test_size = 80%, k = 12

WNMTF
GWNMTF
RPPNMF
RPPNMF(Neighbor)

Fig. 3 Effect of the regularization parameter α

the number of user communities as 30 and change the number of service communities by
varying the ratio l

k from 1
5 to 3. As can be seen, the best MAE performance is achieved when

l = 24, which means that the number of service communities is less than the number of
user communities. Hence, if a clear knowledge of the user and service clusters, a fine tuning
of cluster numbers will help further improve the predictive accuracy. Otherwise, using a
default set of parameters still produces reasonably good result while saving significant effort
in turning the parameters.

6.5.2 Impact of the regularization parameter

We study the impact of the regularization parameter α in Fig. 3. We fix the number of
communities as 12 and vary the percentage of missing entries in F from 20 to 80 %. It
is worth to note that the performance of WNMTF and GWNMTF do not change with α.
The performance difference for different α values showed in Fig. 3 is due to the random
selection of the missing entries in F . In another word, WNMTF and GWNMTF may be
performed on a different QoS matrix F for a different α value. Therefore, instead of directly
checking the MAE values, it is more informative to check the performance advantage of
RPPNMF over WNMTF and GWNMTF. As can be seen, GWNMTF reports better MAE
performance than RPPNMF when α takes a very small value (i.e., 0.1 in the experiments). As
α increases, the MAE performance of RPPNMF keeps getting improved and the advantage of
RPPNMF over both WNMTF and GWNMTF becomes more obvious. RPPNMF (neighbor
only) performs neighborhood regularization without L1 normalization. It exhibits a similar
trend as RPPNMF, which further confirms the effectiveness of neighborhood regularization
in the model. Meanwhile, RPPNMF performs better than RPPNMF (neighbor only) also
justifies the effectiveness of L1 normalization.

123

CloudRec: a framework for personalized service recommendation in the cloud 441

0.1 1 10 100
0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

β

M
A

E
test_size = 20%, k = 12

WNMTF
GWNMTF
RPPNMF
RPPNMF(L

1
 norm)

0.1 1 10 100

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65

β

M
A

E

test_size = 40%, k = 12

WNMTF
GWNMTF
RPPNMF
RPPNMF(L

1
 norm)

0.1 1 10 100
0.7

0.72

0.74

0.76

0.78

0.8

β

M
A

E

test_size = 60%, k = 12

WNMTF
GWNMTF
RPPNMF
RPPNMF(L

1
 norm)

0.1 1 10 100
0.5

1

1.5

2

2.5

3

3.5

4

β

M
A

E

test_size = 80%, k = 12

WNMTF
GWNMTF
RPPNMF
RPPNMF(L

1
 norm)

Fig. 4 Effect of the penalty parameter β

6.5.3 Impact of the normalization parameter

We study the impact of the normalization parameter β in Fig. 4. We fix the number of
communities as 12 and vary the percentage of missing entries in F from 20 to 80 %. For less
sparse datasets, the MAE performance keeps getting improved when β increases. While for
sparse datasets, the MAE performance gets improved with β until β achieves a certain value.
Then, the performance decreases when β increases further. Recall that L1 normalization is
to ensure that cluster memberships are accurately assigned by following the cluster posterior
probability. However, when more data are missing, enforcing such a constraint needs to be
performed based on estimated data, which may affect the accuracy of the model. Therefore,
we suggest to relax the L1 norm constraint (i.e., use a relatively small β) for very sparse
datasets.

7 Conclusion

We propose CloudRec, a novel user-centric framework that provides personalized QoS assess-
ment of cloud services. The cornerstone of CloudRec is a regularized posterior probabilistic
nonnegative matrix factorization (RPPNMF) that captures the inherent cloud-related features
and uses these features to group users and cloud services into a set of communities. These
communities are then leveraged to predict users’ QoS perception on a priori unknown cloud
services. Experimental results demonstrate the good prediction accuracy of RPPNMF and
its ability to handle data scarcity, which is inherent in a cloud environment.

An interesting future direction is to investigate strategies to parallel the workload of
CloudRec so that it can be deployed and handled by a powerful distributed infrastructure,
such as MapReduce [13]. In this way, CloudRec can be scaled up to handle extremely large-
scale data. CloudRec employs an iterative strategy to update matrices U, R, and S. A central
operation in the update rules is matrix multiplication. Hence, in order to parallel the workload,
we can partition matrices U, R, and S into several sub-matrices, compute the multiplications
among these sub-matrices and then aggregate the results. The partition and aggregation steps
can be implemented via the map and reduce operations, respectively, using the MapReduce
paradigm. Some promising result has already been reported in [30], where NMF is used to
factorize a tens of millions by hundreds of millions matrix with billions of nonzero entries.

References

1. (2012) http://www.cloudcomputingmarket.com/
2. Abadi DJ (2009) Data management in the cloud: limitations and opportunities. IEEE Data Eng Bull

32(1):3–12

123

http://www.cloudcomputingmarket.com/

442 Q. Yu

3. Armbrust M, Fox A, Griffith R, Joseph A, Katz R, Konwinski A, Lee G, Patterson D, Rabkin A, Stoica
I, Zaharia M (2009) Above the clouds: a berkeley view of cloud computing. Technical report, 2009.
University of California at Berkeley Technical, Report No. UCB/EECS-209-28

4. Belkin M, Niyogi P (2001) Laplacian eigenmaps and spectral techniques for embedding and clustering.
In NIPS ’01, pp 585–591

5. Breese JS, Heckerman D, Kadie C (1998) Empirical analysis of predictive algorithms for collaborative
filtering. In UAI ’98, pp 43–52

6. Cai D, Wang X, He X (2009) Probabilistic dyadic data analysis with local and global consistency. In:
ICML ’09: Proceedings of the 26th annual international conference on machine learning, pp 105–112,
New York, NY, USA, ACM

7. Canny J (2002) Collaborative filtering with privacy via factor analysis. In: SIGIR ’02, pp 238–245
8. Cao Y, Chen C, Guo F, Jiang D, Lin Y, Ooi BC, Vo HT, Wu S, Xu Q (2011) Es2: a cloud data storage

system for supporting both oltp and olap. In: ICDE
9. Chen C, Chen G, Jiang D, Ooi BC, Vo HT, Wu S, Xu Q (2010) Providing scalable database services on

the cloud. In: WISE, pp 1–19
10. Chen X, Zheng Z, Liu X, Huang Z, Sun H (2011) Personalized QoS-aware Web service recommendation

and visualization. IEEE Trans Serv Comput, (PrePrints)
11. Chen Y, Wang L, Dong M (2010) Non-negative matrix factorization for semisupervised heterogeneous

data coclustering. IEEE Trans Knowl Data Eng 22(10):1459–1474
12. Choudhury P, Sharma M, Vikas K, Pranshu T, Satyanarayana V (2012) Service ranking systems for cloud

vendors. Adv Mater Res 433:3949–3953
13. Dean J, Ghemawat S (2004) Mapreduce: simplified data processing on large clusters. In: OSDI’04,

pp 10–10
14. Deerwester SC, Dumais ST, Landauer TK, Furnas GW, Harshman RA (1990) Indexing by latent semantic

analysis. J Am Soc Inf Sci 41(6):391–407
15. Dhillon IS (2001) Co-clustering documents and words using bipartite spectral graph partitioning. In:

KDD ’01, pp 269–274
16. Ding C, Li T, Luo D, Peng W (2008) Posterior probabilistic clustering using nmf. In: SIGIR ’08,

pp 831–832
17. Ding C, Li T, Peng W, Park H (2006) Orthogonal nonnegative matrix t-factorizations for clustering. In:

KDD ’06, pp 126–135
18. Ding CHQ, He X (2005) On the equivalence of nonnegative matrix factorization and spectral clustering.

In: SDM
19. Ding CHQ, He X, Zha H, Gu M, Simon HD (2001) A min-max cut algorithm for graph partitioning and

data clustering. In: ICDM ’01: Proceedings of the 2001 IEEE international conference on data mining,
pp 107–114, Washington, DC, USA. IEEE Computer Society

20. Dong X, Halevy AY, Madhavan J, Nemes E, Zhang J (2004) Similarity search for web services. In: VLDB
conference

21. Goldberg D, Nichols D, Oki BM, Terry D (1992) Using collaborative filtering to weave an information
tapestry. Commun ACM 35(12):61–70

22. Gu Q, Zhou J (2009) Co-clustering on manifolds. In: KDD ’09, pp 359–368
23. Gu Q, Zhou J, Ding C (2010) Collaborative filtering: weighted nonnegative matrix factorization incorpo-

rating user and item graphs. In: SDM, pp 199–210
24. Han S-M, Hassan MM, Yoon C-W, Huh E-N (2009) Efficient service recommendation system for cloud

computing market. In: Proceedings of the 2nd international conference on interaction sciences: informa-
tion technology, culture and human, ICIS ’09, pp 839–845, New York, NY, USA. ACM

25. Herlocker JL, Konstan JA, Borchers A, Riedl J (1999) An algorithmic framework for performing collab-
orative filtering. In: SIGIR ’99, pp 230–237

26. Hofmann T (2004) Latent semantic models for collaborative filtering. ACM Trans Inf Syst 22(1):89–115
27. Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature

401(6755):788–791
28. Lee DD, Seung HS (2000) Algorithms for non-negative matrix factorization. In: NIPS, pp 556–562
29. Li T, Ding CHQ (2006) The relationships among various nonnegative matrix factorization methods for

clustering. In: ICDM, pp 362–371
30. Liu C, Yang H-C, Fan J, He L-W, Wang Y-M (2010) Distributed nonnegative matrix factorization for

web-scale dyadic data analysis on mapreduce. In: Proceedings of the 19th international conference on
world wide web, WWW ’10, pp 681–690, New York, NY, USA. ACM

31. Long B, Zhang ZM, Yu PS (2005) Co-clustering by block value decomposition. In: KDD ’05: Proceedings
of the 11th ACM SIGKDD international conference on Knowledge discovery in data mining, pp 635–640,
New York, NY, USA. ACM

123

CloudRec: a framework for personalized service recommendation in the cloud 443

32. OWL-S (2004) http://www.daml.org/services/owl-s/
33. Rehman ZU, Hussain OK, Hussain FK (2012) Iaas cloud selection using MCDM methods. In: Proceedings

of the 2012 IEEE 9th international conference on e-Business engineering, ICEBE ’12, pp 246–251,
Washington, DC, USA. IEEE Computer Society

34. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science
290:2323–2326

35. Shao L, Zhang J, Wei Y, Zhao J, Xie B, Mei H (2007) Personalized QoS prediction for web services via
collaborative filtering. Web Services, IEEE International Conference on 439–446

36. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell
22(8):888–905

37. ur Rehman Z, Hussain O, Hussain F (2013) Multi-criteria IaaS service selection based on QoS history. In:
Advanced information networking and applications (AINA), 2013 IEEE 27th international conference
on, pp 1129–1135

38. Vo HT, Chen C, Ooi BC (2010) Towards elastic transactional cloud storage with range query support.
PVLDB 3(1):506–517

39. Yu T, Zhang Y, Lin K-J (2007) Efficient algorithms for web services selection with end-to-end QoS
constraints. ACM Trans Web 1(1):6

40. Zeng L, Benatallah B, Dumas M, Kalagnanam J, Sheng Q (2003) Quality-driven web service composition,
In: WWW

41. Zhang S, Wang W, Ford J, Makedon F (2006) Learning from incomplete ratings using non-negative matrix
factorization. In: SDM’06: Proceedings of the 6th SIAM conference on data mining (SDM), pp 549–553

42. Zhang Y, Koren J (2007) Efficient bayesian hierarchical user modeling for recommendation system.
In: SIGIR ’07: Proceedings of the 30th annual international ACM SIGIR conference on research and
development in information retrieval, pp 47–54, New York, NY, USA. ACM

43. Zhang Y, Zheng Z, Lyu MR (2011) Exploring latent features for memory-based QoS prediction in cloud
computing. In: SRDS, pp 1–10

44. Zheng Z, Ma H, Lyu MR, King I (2009) Wsrec: A collaborative filtering based web service recommender
system. In: ICWS, pp 437–444

45. Zheng Z, Zhang Y, Lyu MR (2010) Cloudrank: a QoS-driven component ranking framework for cloud
computing. In: SRDS, pp 184–193

46. Zheng Z, Zhang Y, Lyu MR (2010) Distributed QoS evaluation for real-world Web services. In: Proceed-
ings of 8th international conference on web services (ICWS’10), pp 83–90

Qi Yu received the PhD degree in computer science from Virginia
Polytechnic Institute and State University (Virginia Tech). He is an
assistant professor at the College of Computing and Information Sci-
ences of Rochester Institute of Technology. His current research inter-
ests lie in the areas of service computing, databases, and data mining.
His publications have mainly appeared in well-known journals (e.g.,
the VLDB journal, ACM Transactions on the Web, World Wide Web
Journal, and IEEE Knowledge and Data Engineering) and conference
proceedings (e.g., ICSOC and ICWS). He is a guest editor of the IEEE
Transactions on Services Computing special issue on service query
models and efficient selection. He frequently serves as a program com-
mittee member on service computing and database conferences (e.g,
IEEE Cloud, SOCA, CollaborateCom, IRI, ICSOC, and APSCC). He
is a member of the IEEE.

123

http://www.daml.org/services/owl-s/

	CloudRec: a framework for personalized service Recommendation in the Cloud
	Abstract
	1 Introduction
	1.1 Challenge 1
	1.2 Challenge 2
	1.3 Challenge 3
	1.4 Summary of contributions

	2 Related work
	2.1 Cloud service and service selection
	2.2 Collaborative-filtering-based recommendation
	2.3 Matrix factorization-based clustering

	3 The QoS assessment model
	3.1 The basic model
	3.1.1 A scenario: setting up a cloud-based enterprise
	3.1.2 The objective function

	3.2 The constrained NMTF
	3.3 Neighborhood regularization
	3.4 The overall objective function

	4 The iterative algorithm
	4.1 QoS estimation
	4.2 Community construction
	4.2.1 Updating U
	4.2.2 Updating S
	4.2.3 Updating R

	5 Theoretical analysis
	5.1 Time complexity

	6 Framework evaluation
	6.1 Case study
	6.2 Experiment datasets
	6.3 Experiment design and parameter setting
	6.4 MAE performance comparison
	6.5 Impact of the model parameters
	6.5.1 Impact of the number of communities
	6.5.2 Impact of the regularization parameter
	6.5.3 Impact of the normalization parameter

	7 Conclusion
	References

