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Abstract. Service composition offers a powerful software paradigm to
build complex and value-added applications by exploiting a service ori-
ented architecture. However, the frequent changes in the internal and
external environment demand adaptiveness of a composition solution.
Meanwhile, the increasingly complex user requirements and the rapid
growth of the composition space give rise to the scalability issue. To
address these key challenges, we propose a new service composition
scheme, integrating gaussian process with reinforcement learning for
adaptive service composition. It uses kernel function approximation to
predict the distribution of the objective function value with strong com-
munication skills and generalization ability based on an off-policy
Q-learning algorithm. The experimental results demonstrate that our
method clearly outperforms the standard Q-learning solution for service
composition.

1 Introduction

In service computing, when a single web service can not meet a complex user
requirement, combining multiple existing services to build a complex value-added
service becomes a common practice, leading to services composition [6]. How-
ever, network-based web services are inherently dynamic. Therefore, a particular
composition solution may become infeasible before execution due to the changes
in the internal and external service composition environment (e.g., Quality of
Service or QoS declining or functional decay). Therefore, a composition solution
needs to adapt to those uncertain factors and deliver an adaptive and reliable
composition solution to users [19]. In addition, the complexity of a composition
workflow and the growth of candidate services lead to a large composition space,
which can be expressed by mn with m being the number of abstract service in
a composition workflow and n being the number of candidate services for each
abstract service [4,16]. Given the above challenges, we should provide a new
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composition solution, which achieves certain adaptability while addressing the
scalability issue at the same time.

Adaptive service composition as a hot topic attracts attentions and recent
studies mainly use integer programming, graph planning, reinforcement learning
and so on. Among them, integer programming may be limited by the scale of
the problem. Graph planning is poorly suited to a dynamic environment. Exist-
ing reinforcement learning methods are also falling short for large-scale prob-
lems [20]. For a large-scale and dynamic service composition problem,
multi-agent, hierarchical reinforcement learning and function approximation
technologies provide some promising directions, some of which have been applied
into services composition with some success. For example, our previous work
addressed the problem by exploiting multi-agent technologies [20] and achieved
a relatively good composition performance. In this paper, we aim to explore
function approximation techniques to deal with large-scale service composition
as the proposed composition solution is built upon an reinforcement learning
algorithm. Reinforcement learning concerns the problem of a learning agent
interacting with its environment to achieve a given goal [1]. Instead of being
given examples of desired behavior, the learning agent must discover by trial
and error how to behave in order to get the most reward, which means that
reinforcement learning methods have inherent adaptability for a dynamic envi-
ronment [20]. However, table-based reinforcement learning algorithms, such as
the Q-learning algorithm [1], only perform well in small-scale problems. They
lack the generalization ability for large-scale problems.

Function approximation techniques overcome the drawbacks of exact repre-
sentations for value functions and policies in reinforcement learning algorithms.
They can solve problems in large or continuous state and action spaces [2]. In
addition, function approximations [2] can be separated into two main types: para-
metric and nonparametric. Parametric approximations map from a parameter
space into the space of functions with predetermined forms and number of para-
meters. The parameters are tuned using training data about the target function.
Unlike the parametric case, nonparametric approximation also has parameters,
but the number of parameters is determined from the data instead of a prior.
Thus nonparametric approximations are more flexible for the practical and large
problems, where it is hard to predefine the number of parameters.

In this paper, we propose a new adaptive composition solution using an
off-policy reinforcement learning algorithm integrated with gaussian process, a
nonparametric approximator. GP is a kind of Bayesian Nonparametric (BNP)
function approximation model. In the large-scale service composition framework,
we first model the service composition problem with a Markov decision process,
then utilize an off-policy Q-learning algorithm to achieve the optimal or near-
optimal composition scheme. In order to adapt to the large-scale scenarios, we
model the Q-value function evaluation process with a kernel function nonpara-
metric approximator to improve the composition performance. Our contributions
are summarized as follows:

– We introduce the MDP-WSC (Markov Decision Process-Web Service Com-
position) model to address large-scale service composition in a dynamic and
complex environment.
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– We optimize a reinforcement learning algorithm based on gaussian process for
service composition. It is a kernel function approximation technique and can
predict the distribution of the objective function value with strong communi-
cation skills and generalization ability.

The reminder of this paper is organized as follows. Section 2 describes related
work. Section 3 introduces the problem formulation and basic definitions. Section 4
presents our approach for service composition based on off-policy Q-learning inte-
grated with gaussian process. In Sect. 5, some experimental results are presented
for evaluating the proposed approach. The paper is concluded in Sect. 6.

2 Related Work

In this section, we review some existing works that are most relevant to our app-
roach, including reinforcement learning (RL) and gaussian process (GP) adopted
in service composition.

Wang et al. [23] proposed an adaptive RL method based on a Markov Deci-
sion Process (MDP) that finds an optimal solution at runtime. A MDP builds
a model for obtaining compositions consisting of multiple aggregated workflows.
The work in [20] extended the ideas in [23] and proposed a optimized model for
service composition in multi-agent scenarios. Liu et al. [14] proposed an improved
RL approach that utilizes the reuse strategy to enhance performance and stabil-
ity of RL techniques. However, they impose high computational cost especially
in large service environments. Moustafa et al. [15] proposed an approach to
the QoS-aware service composition problem using multi-objective reinforcement
learning. But the method is not very efficient for large-scale service composition
scenarios.

The above RL methods for service composition are based on a look-up table,
which is difficult to extend to a large-scale scenario. An possible solution is
to replace the look-up table and value function with function approximation
techniques [3]. Most function approximation techniques can be classified as para-
metric and non-parametric approximation [2]. GP is one of the common non-
parametric function approximation techniques [18]. It is a natural generalization
of multivariate gaussian random variables to infinite (countably or continuous)
index sets. GP has been applied in a large number of fields to a diverse range
of ends, and many deep theoretical analyses of various properties are available.
It is attractive because of its flexible non-parametric nature and computational
simplicity [17].

Yaakov Engel [8] proposed an on-line learning approach to the problem of
value function estimation in continuous state spaces by imposing a gaussian prior
over value functions and assuming a gaussian noise model. They also proposed
a SARSA based extension that allows gradual improvement of policies in [9].
Jonathan Ko [13] presented a general technique for system identification that
combines GP and RL into a single formulation, which is done by training a GP
on the residual between the non-linear model and the ground truth training data.
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Thomas Gartner [11] investigated the use of GP to approximate the quality of
state-action pairs and employed GP in relational Rl by using graph kernels as
the covariance function between state-action pairs.

3 Problem Formulation

Similar to our previous studies [20–23], we use a Markov Decision Process (MDP)
to model the selection of services to form a service composition.

Definition 1 (MDP-Based Web Service Composition (MDP-WSC)).
A MDP-WSC is a 6-tuple MDP-WSC=< S, S0, Sτ , A(.), P,R >, where

– S is a finite set of world states;
– S0 ∈ S is the initial state from which an execution of the service composition

starts;
– Sτ ⊂ S is the set of terminal states, indicating an end of composition execution

when reaching one state Si
τ ∈ Sτ ;

– A(s) represents the set of services that can be executed in state s ∈ S;
– P is the probability distribution function. When a web service α is invoked,

the world makes a transition from its current state s to a succeeding state s′.
The probability for this transition is labeled as P (s′ |s, α );

– R is the immediate reward function. When the current state is s, and a service
α is selected, then we can get an immediate reward r = R(s, a) from the
environment after executing an action.

Fig. 1. The MDP-WSC of a Composite Service

Figure 1 shows a MDP-WSC graph of a composite service for a vacation
plan. It consists of two kinds of nodes, i.e., state nodes and service nodes, which
are represented by open circles and solid circles, respectively. s0 is the initial
state node, and nodes with double circles are terminal state nodes, such as s10.
A state node can be followed by a number of invoked service nodes, labeled with
the transition probability P (s′|s, α). Immediate reward r can be expressed by
aggregated QoS value of a service [23]. A MDP-WSC transition graph can be
created by using some automatic composition approaches, such as an AI planner
[16]. In addition, a MDP-WSC model has sufficient expression ability to describe
a business process control flow [23], and its solution is a deterministic policy π,
which determines the service selection under the specified state.
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There are many reinforcement learning algorithms for solving MDP problems,
from which the off-policy Q-learning algorithm is a widely used strategy for its
simplicity and insensitivity for policy [24]. The off-policy Q-learning algorithm
incrementally evaluates actions’ Q-values according to the reward function and
Q-function. Its iterative formula can be seen in Eq. (1), where α is the learning
rate and γ is the discount factor.

In our large-scale service composition scenario, our solution may face poor
performance if we directly apply the off-policy Q-learning algorithm to search the
optimal (or near-optimal) composition sequence since the Q-learning algorithm
is limited by the solution space. Therefore, we need to optimize the off-policy
Q-learning algorithm to adapt to the large-scale composition scenario.

Q(s, a) ← (1 − α) ∗ Q(s, a) + α ∗ (r + γ ∗ max Q(s′, a′)) (1)

Function approximation is designed to address large-scale or continuous state
space problems [2]. In particular, kernel-based nonparametric approximation,
which is supported by a lot of statistical literature, directly tune parameters from
observed data without specifying prior parameter forms and numbers. It can
achieve more accurate characterization of the state space and is more suitable for
online learning. Therefore, it is widely applied in machine learning algorithms [7,
17]. For a deeper understanding of the principles of kernel methods, we first
introduce several important definitions and theorems related to kernel function
approximation.

Definition 2 (Reproducing Kernel Hilbert Space). H denotes a real-value
Hilbert function space defined in an abstract set X, ∀f(x) ∈ H,x ∈ X, if there
is a binary function k : X × X → �, which satisfies the following conditions:

1. For any fixed y ∈ X, k(x, y) ∈ H as a function of x.
2. For any f ∈ H, f(y) =< f(·), k(·, y) >H.

Then, kernel k is called a reproducing kernel of H, H is called reproducing kernel
space for k, abbreviated as RKHS.

We give the Representer Theorem based on Reproducing Kernel Hilbert
Space, which is the theoretical basis of kernel methods.

Theorem 1 (Representer Theorem). Suppose X is a non-empty set, k(·, ·)
is a positive definite real-valued kernel for X × X, and also is the reproducing
kernel for Hilbert space Hk. Given a sample set (x1, y1), ..., (xn, yn) ∈ X × �,
a strictly increasing real-valued function g : [0,∞] → �, and any risk function
R :

(
X × �2

)m → � ∪ {∞}, then the following objective function f∗ ∈ Hk

satisfies:

f∗ = arg min
f∈Hk

{R ((x1, y1, f(x1)) , ..., (xn, yn, f(xn))) + g (‖f‖)},

and f∗ satisfies the following equation,

f∗ (·) =
n∑

i=1

θik (·, xi), for any1 ≤ i ≤ n, θi ∈ �.
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According to the Representer Theorem, the value function of a reinforcement
learning algorithm can be expressed as Eq. (2), where s denotes observed data,
si denotes samples, θ denotes parameter vector, and k(·, ·) denotes the kernel
function. Another theorem having a profound impact on kernel methods is Mer-
cer theorem, and it also provides theoretical support for the widely used kernel
trick.

V (s) =
n∑

i=1

θik (s, si). (2)

Theorem 2 (Mercer Theorem). Let k(·, ·) be a positive-definite, symmetri-
cal, continuous and bounded kernel function. Then, the (positive-definite) integral
operator Tk : Θ → Θ defined by Tkθ(x) =

∫
x

k(x, x′)θ(x′)ρx(x′)dx′, where ρx(·)
is the marginal distribution of x, has a countable set of continuous eigenfunctions
{ψi}∞

i=1 with their respective positive eigenvalues {λi}∞
i=1, such that for almost

all x, x′, k(x, x′) =
∞∑

i=1

λiψi(x)ψi(x′).

According to Mercer theorem, if we define φi =
√

λiψi, then k(x, x′) =
∞∑

i=1

φi(x)φi(x′) = φ(x)Tφ(x′), and we can get an useful corollary, referred to as

“Kernel Trick”.

Corollary 1 (Kernel Trick): Any algorithm, which may be stated using only
inner products between members of the input space, can be immediately replaced
with a new (kernel) algorithm, in which the inner products are replaced with
kernel evaluations.

An algorithm, applying Kernel Trick to convert to a non-linear kernel form,
will be understood as a linear algorithm in the feature space. For example,

according to the kernel expression of Representer Theorem
t∑

i=1

αik (xi, x), after

using the Kernel Trick, we can get the expression wTφ(x), where w =
T∑

i=1

αiφ(xi).

In this paper, we utilize gaussian process, a Bayesian nonparametric (BNP)
function approximation kernel method, to model Q-value function evaluation in
the algorithm learning process so as to address large-scale service composition
problem. Gaussian process [3,5,17], seeking to a maximum posterior probability
through Bayesian inference, can achieve a probability distribution of Q-value for
a reinforcement learning algorithm, which is helpful for state-space search in the
learning process. Specifically, it is be defined as the following:

Definition 3 (Gaussian Process). Gaussian process can be seen as a set of
random variables, wherein each random variable contains an input variable x(x ∈
X, (x ∈ �d)), and for any finite random variables fx are subject to a joint
Gaussian distribution.
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f ∼ gp(m, k) (3)

A gaussian process can be uniquely determined by the mean function m(x) =
E(fx) and covariance function k(x, x′) = E[(fx − m(x))(fx′ − m(x′))], wherein
k is the kernel function. Under the noisy environment, given the training sam-
ple input and the corresponding output value {(xi, fi) |i = 1, ..., n}, f∗ is output
value corresponding to the testing input set X∗. Then we can get a joint distri-
bution,

[
y
f∗

]
∼ N

(
0,

[
K(X,X) + ω2

nI K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
(4)

where the K(X,X∗) denotes n × n∗ (n is the number of training sample, n∗
is the number of testing points) covariance matrix between training samples
and testing points. K(X,X), K(X∗,X), and K(X∗,X∗) are similarly defined. ε
denotes noise, y(x) = f(x) + ε, and cov(y) = K(X,X) + ω2

nI.
Then, we can get the posterior predictive equation of a noisy gaussian process

as following:

f∗
∣
∣X, y,X∗ ∼ N

(
f∗, cov(f∗)

)
,

f∗
Δ= E[f∗ |X, y,X∗ ] = K(X∗,X)

[
K(X,X) + ω2

nI
]−1

y,

cov(f∗) = K(X∗,X∗) − K(X∗,X)
[
K(X,X) + ω2

nI
]−1

K(X,X∗).
(5)

4 Reinforcement Learning for Service Composition Based
on Gaussian Process

4.1 Predicting Q-Value Based on Gaussian Process

When modeling the Q-value function with a gaussian process, the corresponding
input field is all state-action pairs, and the desired result is a function of the
distribution of Q values. More specifically, Z = [z1,··· ,zτ ] represents the sam-
ple collection of observed action-state pairs, and a action-state pair is labelled
as z =< s, a >. −→y = [y1, · · · , yτ ]T is the observed value vector corresponding
to the sample collection of action-state pairs. Given some data points −→y for
the input field Z, we aim to predict the value of Q-function yτ+1 at new input
point zτ+1. We use K(Z,Z) to represent the kernel matrix, and take the corre-
sponding Kl,m = k(zl, zm) as the covariance between state-action pair zl and
zm. K(Z, zτ+1) indicates the estimation of the kernel vector for state τ + 1. ω2

n

represents the possibility of uncertainty for estimation. Based on Eq. (5), we can
derive the estimation and covariance of Q-value

Q̂(zτ+1) = m(zτ+1) = αT
τ K(Z, zτ+1),

cov(zτ+1) = k(zτ+1, zτ+1) + ω2
n − KT(Z, zτ+1)[K(Z,Z) + ω2

nI]−1K(Z, zτ+1)
(6)

where ατ = [K(Z,Z) + ω2
nI]−1y.

We use this as the updating formula of the Q-learning algorithm, and replace
Q(s, a) with the estimated value Q̂(s, a) according to the gaussian posterior
prediction.
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Q̂(s, a) = (1 − α) ∗ Q̂(s, a) + α ∗ (r + γ ∗ max Q̂(s′, a′)) (7)

We update Q̂ according to the newly observed data. The accuracy of obser-
vation depends on the accuracy of the current model. ω2

n, which represents the
gaussian noise, serves as a regularization item here. It can prevent the model
from converging too fast to an inaccurate estimation Q∗.

4.2 Constructing the Sparse Dictionary Online

Although integrating gaussian process with reinforcement learning can improve
the flexibility and accuracy, the continually increasing sample space in iterative
processes may lead to an increase for computational complexity at a polynomial
rate (the time complexity is usually O(τ3), and τ is the size of trained sample
data ), which may cause thorny challenges to practical use. Given this, there is
a need for sparsification of the sample space, aiming at constructing a sparse
dictionary and thus reducing the number of redundant samples and speeding up
the convergence.

The method for dictionary construction can be classified as either on-line or
off-line. Off-line dictionary construction uses either feature selection or feature
extraction methods. Kernel principal component analysis (KPCA) is a common
method, which is an extension of the standard PCA by exploiting the kernel
trick. The computational complexity of standard feature decomposition using
KPCA is O(n3).

The basic idea of online dictionary construction is as following: if a new
sample zi can be converted to a linear representation by samples in the dic-
tionary, then the new sample will not join in the dictionary. Assuming that at
t − 1, we get a sample dictionary, Dt−1 =

{
φ(z1), φ(z2), ..., φ(zMt−1)

}
, where

φ(zi) is the feature vector of zi in the dictionary D and M is the size of the
dictionary (i.e., M = |Dt−1|). Online dictionary construction methods include
Approximate Linear Dependence (ALD), Projection and Novel Criterion (NC).
Due to the online requirement of reinforcement learning, we need to construct
a sparse dictionary online to guarantee the effectiveness and efficiency. Approxi-
mate Linear Dependence (ALD), which finds approximate answers for full rank
conditions, has been used in reinforcement learning. It can construct a sparse
dictionary online according to the condition of approximate linear dependence.

For a new feature vector φ(zt), the condition of approximate linear depen-
dence can be depicted as following:

δt = min
c

∥
∥
∥
∥
∥
∥

∑

j

cjφ(zj) − φ(zt)

∥
∥
∥
∥
∥
∥

2

≤ ξ (8)

where c = [cj ] and ξ is the threshold that determines the approximation quality
and sparsity. When the condition in Eq. (8) is satisfied, the feature vector φ(zj)
will be ignored. Otherwise, it will join in the sample set.
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δt = min
c

∥
∥
∥
∥
∥

∑

j

cjφ(zj) − φ(zt)

∥
∥
∥
∥
∥

2

= min
c

{

∑

i,j

cicj < φ(zi), φ(zj) > − 2
∑

i

ci < φ(zi), φ(zt) > + < φ(zt), φ(zt) >

}

,

(9)

By using the kernel trick, < φ(x), φ(y) >= k(x, y) = kxy, we can derive that

δt = min
c

{cTKt−1c − 2cTkt−1(zt) + ktt}, (10)

where the solution of Eq. (10) is

ct = Kt−1
−1k(t − 1)(zt),

δt = ktt − kT
t−1(zt)ct

(11)

We can see that, the computation of every step in the ALD method is mainly
focusing on getting a inverse of the kernel matrix. So, the computational com-
plexity is O(M2), and M is the size of the sample dictionary. We use the method
mentioned above to construct a sparse dictionary.

4.3 Updating the Gaussian Process Parameters

We know that the dictionary is the basis of prediction by a gaussian process.
The functional form and parameters of a gaussian process are updated by data
samples in the dictionary. Now we will introduce the method for updating the
gaussian process parameter, which is similar to what in [5].

Given a dictionary Zd, according to Eq. (6), the predictive value and covari-
ance are computed as following:

m(zτ+1) = αT
τ k(Zd, zτ+1)

cov(zτ+1) = k(zτ+1, zτ+1) + kT(Zd, zτ+1)Cτk(Zd, zτ+1)
(12)

where Cτ = −(K + ω2
nI)−1. Given a new data point, the kernel matrix trans-

position and weight α can be computed according to the rank of the current
kernel matrix. When updating online, we first give the definition of the following
scalars:

qτ+1 =
y − αT

τ kxτ

ω2
n + kT(Zd, zτ+1)Cτk(Zd, zτ+1) + k(zτ , zτ )

,

rτ+1 = − 1
ω2

n + kT(Zd, zτ+1)Cτk(Zd, zτ+1) + k(zτ , zτ )

(13)

We take eτ+1 as unit vector, the operators Tτ+1(·), Uτ+1(·) means expanding
the τ dimensional vector and matrix to τ +1 dimensional vector and matrix (by
adding in 0). Consequently, the gaussian process parameter can be computed
recursively by the following equations:

ατ+1 = Tτ+1(ατ ) + qτ+1sτ+1,
Cτ+1 = Uτ+1(Cτ ) + rτ+1sτ+1s

T
τ+1,

sτ+1 = Tτ+1(Cτkxτ+1) + eτ+1.
(14)
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4.4 OGPQ Algorithm

In this section, we introduce the main steps of Q-learning for large-scale service
composition based on a gaussian process (referred to as OGPQ). By constructing
the sparse dictionary online as well as predicting the distribution of Q-values
and updating the gaussian process parameter, we can derive an algorithm for
large-scale service composition based on kernel methods. The algorithm is given
below.

1: Initialization: discount rate γ, learning rate α, Q̂(s, a) = 0(s ∈ S, a ∈ A),
initial state s0, terminal state sr, BV = {}

2: repeat
3: for every episode, every time step τ do
4: According to ε-greedy policy, select the service aτ

5: execute the service aτ , observe the reward rτ ,sτ+1, make zτ =< sτ , aτ >
yτ = r + γmaxaτ+1Q̂(sτ+1, aτ+1)(equal to 7)

6: if δτ+1 > ξ (judge by the ALD method) then
7: BV =BV +zτ

8: end if
9: compute Kzτ+1 , ατ+1

10: update Q̂(zτ+1) = m(zτ+1) = αTK(Z, zτ+1)
11: Until sτ+1 is the terminal state
12: end for
13: until the convergence condition is satisfied

Algorithm 1. OGPQ Algorithm

BV in the dictionary represents the sample dictionary, which is empty at
first. After the selection of services according to the ε-greedy policy, we can judge
whether a new sample should join the dictionary based on the newly observed
data (state-action input zτ and the corresponding output yτ ). Then we update
the parameter of the gaussian process and adjust the predicted Q-value, until
the algorithm converges to an optimal estimation Q∗.

5 Experiments and Analysis

In this section, we present the experimental result of our proposed service com-
position method. We demonstrate the effectiveness, adaptivity and scalability of
the off-policy Q-learning algorithm integrated with a gaussian process. We also
compare it with the standard Q-learning algorithm, and analyze the results.

5.1 Experiment Setting

We randomly generate MDP-WSC transition graphs and use them as the input,
and choose four QoS attributes from the extended QWS Dataset1, which are
1 http://www.uoguelph.ca/∼qmahmoud/qws/.

http://www.uoguelph.ca/~qmahmoud/qws/
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ResponseT ime, Throughput, Availability and Reliability. A number of key
parameters are set up for the experiments as follows. The learning rate α of the
standard Q-learning algorithm (referred to as GRQ in what follows) is set to 0.6
according to the study in [23]. In this paper, the learning rate for the Q-learning
algorithm integrated with a gaussian process (referred to as OGPQ in what
follows) is 300

300+n(s)∗β (β = 0.6, n(s) is the number of accessing state s), which is a
form of α = a

b+k satisfying the convergence condition of iterative algorithm [10,
12]. The discount factor γ is set to 0.9 and the ε-greedy exploration strategy
value is set to 0.6. Other parameters are set as follows: recency regulators factor
μ = 0.1, gaussian kernel k(x, x′) = exp

(
‖x − x′‖2

/
(
2σ2

k

))
, σk = 0.1, threshold

parameter of sparsity ξ = π
2 , regularization term ω2

n=1. The experiments are
conducted on an Intel i3-2120 3.30 GHz PC with 4 GB RAM.

5.2 Result Analysis

1. Validation of Effectiveness. The purpose of the first experiment is to
examine the effectiveness of OGPQ compared with GRQ. In this scenario, a
MDP-WSC has 100 state nodes and 100 candidate services for each state. We
can see from Fig. 2(a), OGPQ is obviously superior to GRQ with regard to
convergence rate, where OGPQ converges at about the 3000th episode and GRQ
converges at about the 3600th episode. Since OGPQ performs online training,
its performance is not outstanding in initial learning, but with more and more
training samples, the gaussian posterior value prediction tends to be mature,
which helps guide the state-space search and accelerate convergence. In contrast,
GRQ can not effectively utilize the learning experience to guide learning process.
It performs a random exploration, which is limited by the large-scale composition
space. Thus, its convergence rate is relatively slower. In addition, OGPQ also
achieves a higher cumulative reward value than that of GRQ, which means that
OGPQ is closer to the optimal composition solution than GRQ.

Overall, this experiment verifies the effectiveness of OGPQ. It also demon-
strates its superiority in terms of exploration and convergence when compared
with GRQ.

2. Validation of Adaptability. The purpose of the second experiment is to
verify the adaptability of OGPQ. The setting of the service state nodes and can-
didate services is the same with the first experiment. To simulate a dynamic envi-
ronment, we randomly change the QoS values from a fixed number of candidate
services during the learning process. In order to facilitate comparison, we change
the QoS after the 1500th learning episode and before the 1600th learning episode.
According to the experimental results in Fig. 2(b), OGPQ and GRQ both finally
achieve convergence in spite of the dynamic environment, which demonstrates
the adaptability of both algorithms. In addition, OGPQ is superior to GRQ per-
taining to convergence rate and discount cumulative reward value. Since OGPG
predicts the Q-value distribution based on samples, the QoS fluctuation in the
learning process has little effect on convergence rate and the discount cumulative
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Fig. 2. (a) Validation of effectiveness (b) Validation of adaptability

reward value. It converges at about the 3100th learning episode with discount
cumulative reward value of 55. In constrast, GRQ is totally dependent on the
composition learning algorithm, which needs to relearn the optimal composition
solution and delay convergence when the QoS of candidate services changes.

In sum, this experiment verifies the adaptability of the proposed OGPQ
algorithm facing with a dynamic composition environment, which is beneficial
to provide a more reliable service composition solution.
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Fig. 3. (a) 200 candidate services, (b) 300 candidate services

3. Validation of Scalability. Here, we examine the influence of the states and
candidate services respectively to verify the scalability of the proposed OGPQ
algorithm. Firstly, we vary the number of services for each state node from
200 to 500 while fixing the state nodes at 100. From Figs. 3 and 4, we can
see that OGPQ always has a distinct advantage, and converges at about the
3200th episode, 3400th episode, 3800th episode and 4000th episode, respectively
when the candidate services for each state increasing from 200 to 500. On the
other hand, GRQ converges at about the 4100th episode, 4400th episode, 4800th
episode and 56000th episode, respectively. That is to say, GRQ can not converge
before the 5000th episode in the 500 candidate services scenario. GRQ is a pure
table-based learning algorithm and its learning efficiency will drop rapidly when
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Fig. 4. (a) 400 candidate services, (b) 500 candidate services
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Fig. 5. Different state number for OGPQ

facing a large-scale composition scenario. The proposed OGRP algorithm, which
integrats the generalization ability of a gaussian process, can address large-scale
problems. Thus it still maintains a strong scalability in a large-scale service
composition scenario.

Next, we fix the candidate service number as 100 for each state node and
increase the state nodes from 200 to 400, to explore the impact of the growth on
state nodes for service composition. As the number of state nodes directly affects
the discount cumulative reward value, we use deviation degree D to perform
experimental analysis. Deviation degree is given by D = OPR−CCR

OPR , where OPR
indicates the optimal convergence reward, and CCR is the current convergence
reward. We can see from Fig. 5, the deviation degree D of OGPQ in the scenarios
of 200 state nodes, 300 state nodes and 400 state nodes is 9.8 %, 15.1 %, and
20.5 %, respectively. The more state nodes the higher of D. That is to say,
the increasing number of state nodes may result in more deviation from the
optimality and fall into local optima. Hence, we can conclude that the OGPQ
has the scalability when face with the increment of states nodes.

To sum up, the OGPQ algorithm can be applied to large-scale service com-
position scenarios with good scalability compared with GRQ.
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6 Conclusions and Future Directions

To take QoS into consideration and maintain composition adaptivity and effi-
ciency in a large-scale scenario, we propose a service composition approach based
on reinforcement learning and gaussian process. In our approach, we first model
the service composition problem using a MDP-WSC model, and aggregate all the
QoS values into the reward function. In this way, the optimal service composi-
tion problem is transformed into a stochastic decision process problem. We then
use the modified Q-learning algorithm to compute the solution, which integrates
with a gaussian process. Through experimental analysis, we have demonstrated
the effectiveness, adaptivity, and scalability in large-scale service composition.

The proposed approach can be further improved from the following aspects:

– In our framework, we assume that the environment can be observed fully,
which may be not practical in some complex scenarios. To overcome this, a
more generalized decision model based on Partially Observed Markov Decision
Process can be introduced in the future work.

– The ALD method used to achieve the sparseness of the online dictionary still
faces the problem of efficiency. We will try to exploit the NC method (whose
time complexity is O(n)), which may reduce the computational complexity.

– The size of QWS dataset used in our experiment can not meet our require-
ments for large-scale service composition scenarios. We plan to collect more
real services’ information and thus to construct a large-scale service dataset
for service composition.
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