
WS-HFS: A Heterogeneous Feature Selection Framework for Web Services Mining

1Liang Chen, 2Qi Yu, 3Philip S. Yu, 1Jian Wu
1College of Computer Science & Technology, Zhejiang University, Hangzhou, China

2College of Computing & Informaton Sciences, Rochester Institute of Technology, Rocehster, USA
3Department of Computer Science, University of Illinois at Chicago, Chicago, USA

1{cliang,wujian2000}@zju.edu.cn, 2qi.yu@rit.edu, 3psyu@cs.uic.edu

Abstract—With the development of Service Computing and
Big Data research, more and more heterogeneous data gener-
ated in the process of Service Computing attracts our attention.
Combining correlated data sources may help improve the
performance of a given task. For example, in service recom-
mendation, one can combine (1) user profile data (e.g. genders,
age, etc.), (2) user log data (e.g., clickthrough data, service
invocation records, etc.), (3) QoS data (e.g. response time,
cost, etc.), (4) service functional description (e.g., service name,
WSDL document, etc.) and (5) service tagging data (i.e., tags
annotated by users) to build a recommendation model. All these
data sources provide informative but heterogeneous features.
For instance, user profile and QoS data usually have nominal
features reflecting users’ background and services’ qualities,
log data provides term-based features about users’ historical
behaviors, and service functional description and tagging data
have term-based features reflecting services’ functionalities and
users’ collective opinions. Given multiple heterogeneous data
sources, one important challenge is to find a unified feature
subspace to capture the knowledge from all data sources. To
handle this problem, in this paper, we propose a Heterogeneous
Feature Selection framework, named as WS-HFS, in which
the consensus and the weight of different sources are both
considered. Moreover, we apply the proposed framework to
Web service clustering as a case study, and compare it with
the state of the art approaches. The comprehensive experiments
based on real data demonstrate the effectiveness of WS-HFS.

Keywords-Heterogeneous Feature; Web Service Mining;
Clustering

I. INTRODUCTION

With the explosive growth and population of Web ser-

vices, more and more heterogeneous data is generated in

the process of Service Computing (e.g., service invocation,

service composition, etc.). For example, WebserviceX.Net1

serves 6,000,000+ Web services transactions every day, in

which massive data are generated, e.g., user profile data,

service invocation records, etc. Web service search engines,

such as Seekda!2 and Titan3, allow users to annotate tags to

Web services, which generates lots of tagging data. Current

research on QoS prediction [14], [18] also provides many

QoS information which could not be obtained in the previous

research.

1WebserviceX.Net: http://www.webservicex.net/ws/default.aspx
2Seekda!: http://webservices.seekda.com/
3Titan: http://ccnt.zju.edu.cn:8080/

Combining correlated data sources may help improve

the performance of a given Web service mining task. For

example, in Web service substitution, a user may want to

find a similar service to substitute an unavailable one by con-

sidering both the functional and non-functional properties.

For this task, related data sources can be (1) QoS data (as

shown in Fig.1(a)), (2) service functional description data (as

shown in Fig.1(b)), and (3) service tagging data (as shown

in Fig.1(c)). Each single data source may not be informative

enough to build the accurate model, while the combination

of them may provide comprehensive knowledge. For in-

stance, in Fig.1(a), given that the weather forecasting service

s1 is unavailable, we have to select a similar one from

the other three services to substitute s1. For simplicity, the

WSDL documents of the other three services are assumed

to have the same similarity with the one of s1. Note that

it is difficult to obtain the answer just from any one of the

data sources (Fig.1(a), Fig.1(b) or Fig.1(c)). However, if we

combine these three data sources together, it can be observed

that s2 is similar to s1 in all three data sources, thus s2
could be selected to substitute s1. In particular, it should be

noted that s1 and s2 forecast the USA weather, while s3
forecasts the Europe weather, hence s2 is the better choice

than s3 even though they are both similar to s1 in QoS and

functional description.

The three data sources in Fig.1 provide informative but

heterogeneous features. For instance, QoS data usually has

nominal features reflecting services’ qualities, service func-

tional description and tagging data have term-based fea-

tures reflecting services’ functionalities and users’ collective

opinions. Given multiple heterogeneous data sources, one

important challenge is how to combine them to collectively

solve the problem, more specifically, how to find a unified

feature subspace to capture the knowledge from all data

sources. In particular, there are two points worth noting:

1) How to find one unified feature subspace. Given the

heterogeneous features from multiple sources, it is not

clear how to find one unified feature subspace. Further,

the feature selection/reduction should be considered,

because a straightforward join of features from differ-

ent sources is not practical for real problem.

2) How to weight different data sources. For two

2015 IEEE International Conference on Web Services

978-1-4673-7272-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICWS.2015.35

193

�������� �	
���� ��
�	�
���
������
���

��� ���� ���

��� ���� ���

�	� ���� ���

��� ��
� �	�

(a) QoS Data

�������� �	
�� �����

��� ��������

��� ��������

�	� ��������

��� ��������

(b) Service Functional Description Data

�������� �����������		�
	�

�� ���������	����
������

��� ���������	���

��� ������������	���

��� ���������	���

(c) Service Tagging Data

������� ��������	�����������
�������	�
�����

��� ����

��� ����

��� ����

��� 	����

(d) A Unifined Feature Space

Figure 1: Related data sources in service substitution. Given service s1 is unavailable, it is difficult to select the most suitable one for substitution by
considering only one of the data sources (Fig.1(a), Fig.1(b) or Fig.1(c)). However, if we capture the knowledge from all three sources, it can be observed
that s2 is the most similar one to s1. A unified feature subspace generated from this example is given in Fig.1(d)

different tasks, the effect of the same data source

may be different. Furthermore, some data sources may

contain substantial noise, thus it is desirable to reduce

their effect.

To solve the above problems, we propose a Heterogeneous

Feature Selection framework for Web service mining, named

as WS-HFS. Given a certain task of Web service mining

(e.g., service clustering, recommendation), the goal of WS-

HFS is to capture the knowledge from multiple related data

sources to handle it, the strategy is to project the features of

multiple data sources onto a unified feature subspace, and the

principle of finding unified feature subspace is to maximize

the variance of the projected data. In particular, all feature

spaces should be projected onto the same feature subspace

consensually. For example, the heterogeneous features from

Fig. 1(a) and Fig. 1(b) both have to agree on and be projected

onto a common feature subspace as Fig. 1(d), such that their

original data structures (e.g., data similarity) are preserved.

Further, given multiple data sources, we propose a quadratic

programming problem to identify sources that are more

informative, and optimally weight them to learn a better

projection. To evaluate the effectiveness of the proposed WS-

HFS, we apply it to Web service clustering as a case study.

The comprehensive experiments based on real-world Web

services demonstrate the effectiveness of WS-HFS.

In particular, the main contributions of this paper can be

summarized as follows:

1) We propose a novel Heterogeneous Feature Selection

framework (WS-HFS) for Web service mining, in

which the knowledge from multiple data sources can

be captured and combined to solve problems.

2) We propose an approach to weight the effect of each

data source, for the purpose of improving the accuracy

of WS-HFS.

3) We crawl 15,968 real Web services to evaluate the

effectiveness of WS-HFS framework and the proposed

weight learning approach.

The rest of this paper is organized as follows. Section

2 gives an overview of the related work on Web service

mining. Section 3 details the proposed WS-HFS framework,

while Section 4 presents the weight learning approach that

helps improving the performance of WS-HFS. Section 5

shows the comprehensive experimental results on Web ser-

vice clustering, and Section 6 concludes the paper.

II. RELATED WORK

Web service mining [6], which combines traditional ser-

vice oriented computing (SOC) and state-of-the-art data

mining techniques, attracts more and more attentions. QoS

Data, WSDL documents, service invocation records are three

main information sources for the research of Web service

mining. In recent years, tagging data, which is annotated

by users and provides meaningful descriptions, is utilized as

another information source for Web service mining. Further,

there is a trend that researchers begin to use multiple sources

for Web service mining, rather than using only one source.

In the following, we overview the state of the art research

of the above four data sources for handling different tasks

in Web service mining.

A. Web Service Clustering

Recently, Web service clustering [15], [13] has been

demonstrated as an effective tool to boost the performance

of Web service discovery. WSDL documents and tagging

data are two main data sources for Web service clustering.

Liu et al. and Elgazzar et al. propose to extract four kinds

of information, i.e., content, context, host name, and service
name, from the WSDL document to cluster Web services [5],

[12]. SVD based and matrix factorization based approaches

are adopted to achieve the co-clustering of services and

operations in [16], [17]. Co-clustering exploits the duality

relationship between services and operations to achieve

better clustering quality than one-side clustering. In our

prior work [2], we first proposed to utilize both WSDL

194

documents and tags to cluster Web services by combining

users’ knowledge and service providers’ knowledge. The

LDA model is employed as another approach to utilize

WSDL documents and tagging data [3].

B. Web Service Composition

QoS data and service invocation records are two main

data sources for Web service composition. Canfora et al.

first proposed to use genetic algorithms for QoS-aware

service composition [1]. Liu et al. propose to enhance the

performance of service composition by taking advantage of

historical QoS records, rather than using the tentative QoS

values advertised by the service provider [11]. Recently,

Chen et al. propose to utilize both QoS data and service

invocation records to improve the performance of service

composition by using Bayes theorem and A∗ algorithm

[4]. In particular, Bayes theorem is employed to find the

candidates with high possibility, while A∗ algorithm is used

to reduce the search space.

C. Web Service Recommendation

QoS-aware Web service recommendation is consistently

a hot research topic, in which QoS data is utilized for

service recommendation [18]. Recently, service invocation

records and WSDL documents are employed as comple-

mental sources for recommendation. Kang et al. propose to

employ both service invocation records and QoS data for

QoS-aware recommendation, by extracting users functional

interests and QoS preferences from the invocation records

[9]. Liang et al. propose to utilize both WSDL documents

and QoS data for QoS-aware recommendation, by employing

matrix factorization and topic model [10].

From the overview of the state of the art research, it

can be observed that the usage of multiple heterogeneous

data sources for Web service mining will be the trend in

the near future. However, the usage of multiple sources

in the above research is quite straightforward, which can

not totally capture the knowledge from multiple sources.

In the following of this paper, WS-HFS framework and its

technique details will be introduced, and the comprehensive

experiment results will demonstrate its effectiveness.

III. WS-HFS FRAMEWORK

In this section, we first describe the architecture of the

proposed WS-HFS framework for Web service mining,

and then introduce the details of the heterogeneous feature

selection approach.

A. Framework Overview

Figure 2 shows the architecture of the proposed WS-HFS

framework, which consists of two major components: data

preprocessing and service mining. In the first component,

according to the given service mining task, related data

sources are selected and the corresponding feature spaces are

���������

������������
��

�����	�����������
������	�����������

��������������

������������
 �

������������
�

�����������
�

�����������

������������

���!���������
�

������������

���!���������

��"��#��������
�������

��"����������
����������

��"����������
���������

��"���������
���������

��"���������
��������

��������
��������

��������
��������

��������#�����������
������

�����
��
�����

���$�����������
�������

��������������
��%����#���

Figure 2: WS-HFS Framework for Web Service Mining

constructed. Using Fig. 1 as an example, QoS data source,

service functional description data source, and service tag-

ging data source are the related data sources. As for the

feature space construction, for instance, each feature in the

QoS data source represents a property of service quality

(e.g., cost, response time), and each feature in the service

functional description data source represents a word in the

service name or in the WSDL document. After that, WS-

HFS is employed to generate a unified feature subspace,

in which the knowledge from all related data sources are

captured and combined. Finally, according to the given task,

the features in the unified feature subspace are utilized for

task-oriented computation, and the result will be returned

to the user. For example, given a Web service clustering

task, the features in the unified feature space are utilized

for service similarity computation, and the clustering result

based on the service similarities will be returned to the user.

B. Heterogeneous Feature Selection

As discussed in Section 3.1, the data will be described in

heterogeneous feature spaces from multiple sources. In this

paper, we use column vector xj
i ∈ R

dj to denote the i-th data

in the j-th data source (or feature space) whose dimension

(i.e., number of features) is dj . Using Fig.1(a) as an example,

given QoS data source is the first data source, s1 can be

described as x1
1=(0.5,22), and the dimension is 2. As for

the text-based data source, such as WSDL document, each

feature represents one word and the feature value reflects

the presence or absence of the word in the document. In

the matrix form, we denote Xj ∈ R
dj×m as the set of data

in the j-th feature space where m is the sample size (e.g.,

number of services in Fig.1).

WS-HFS is not simply joining features from multiple

data sources together. Actually, joining features together for

service mining is not practical in real applications. In such

a case, given p related data sources, the dimension goes up

to
∑p

j dj , which is approximately p times of the original

195

dimension. In a linear classification model, it means the

number of variables increases by p times, which may easily

encounter the under-fitting problem. Further, some data

sources may contain substantial noise that hurt the service

mining performance. Thus, in some ways, heterogeneous

feature selection is a kind of dimensionality reduction.

In this paper, we model heterogeneous feature selection

as an unsupervised dimensionality reduction problem, and

propose WS-HFS to project heterogeneous features from

multiple sources onto a unified feature subspace. The princi-

ple of WS-HFS is to maximize the variance of the projected

data to select the principal features. In addition, we introduce

an important constraint, which forces all heterogeneous

feature spaces to be projected onto the same subspace.

Similar to common dimensionality reduction approaches, the

data are normalized to zero mean, and the aim of WS-HFS

is to find the orthogonal linear projection bias uj for all

feature spaces (j = 1, 2, ..., p). Thus, the general objective

function can be described as follows:

max
u

Ω(u) + αΨ(u), (1)

where Ω(u) means the variance of the projected data, which

depends on the projection bias u = [u1, u2, ..., up]. The

second term Ψ(u) is employed to reflect the constraint

that forces all feature spaces to be projected on the same

subspace. And the parameter α is introduced to control how

strongly we want the data to be projected onto a unified

subspace. And the detailed objective function can be written

as follows:

max
u1,u2,...,up

p∑
j=1

wj

m∑
i=1

(xjT

i uj)2

− α

p∑
j=1

p∑
k=1

m∑
i=1

||(xjT

i uj)− (xkT

i uk)||2

s.t.||uj || = 1, j = 1, 2..., p

(2)

where xjT

i uj means the projection length of xj
i on uj ,

wj means the weight of j-th data source (or feature space),

and ||(xjT

i uj) − (xkT

i uk)|| measures the ”agreement” of

projections from different data sources on the unified feature

subspace. Ideally, we should give higher weights to the data

sources that are more informative, however all weights are

first set to be equal in this section. A data source weight

learning approach will be introduced in the next section. To

solve the optimization problem in Eq.2, we first derive an

equivalent optimization problem. The second term in Eq.2

can be transformed as follows:

− ||(xjT

i uj)− (xkT

i uk)||2

= −(xjT

i uj)T (xjT

i uj)− (xkT

i uk)T (xkT

i uk)

+ 2(xjT

i uj)T (xkT

i uk)

(3)

Note that the first two terms in Eq.3 can be incorporated

into the first term in Eq.2, and the last term is controlled

by the parameter α. Thus, maximizing Eq.2 is equivalent to

maximize the following equation:

max
u1,u2,...,up

p∑
j=1

wj

m∑
i=1

(xjT

i uj)2+

α

p∑
j=1

p∑
k=1

m∑
i=1

(xjT

i uj)T (xkT

i uk)

s.t.||uj || = 1, j = 1, 2..., p

(4)

And the optimization problem in Eq.4 can be written in

a matrix form as follows:

max
u1,u2,...,up

p∑
j=1

wju
jT XjXjT uj + α

p∑
j=1

p∑
k=1

ujT XjXkT

uk

s.t.||uj || = 1, j = 1, 2..., p
(5)

As discussed above, the weights of data sources are set to

be equal, i.e., wj = 1
p . Thus, the left unknown variables in

Eq. 5 are just the projection biases u1, u2, ..., up. To solve

the optimization problem in Eq.5, we further transform it

into a more compact form:

max
u

uT Zu, s.t.||uj || = 1, j = 1, 2..., p, (6)

where u = [u1, u2, ..., up], and Z is defined as follows:

Z =

⎡
⎢⎢⎢⎣

w1X1X1T αX1X2T ... αX1XpT

αX2X1T w2X2X2T ... αX2XpT

...

αXpX1T αXpX2T ... wpXpXpT

⎤
⎥⎥⎥⎦ (7)

Then the optimization problem in Eq.6 is now a stan-

dard eigenvalue problem, where u are the eigenvectors that

correspond to the top-p largest eigenvalues of Z. Due to

the space limitation, we do not show the details of the

eigenvalue solution. After solving Eq.6, the projection bias

u = [u1, u2, ..., up] can be obtained, and the unified feature

subspace can be generated by projecting the heterogeneous

feature spaces according to u.

IV. DATA SOURCE WEIGHT LEARNING

In the process of heterogeneous feature selection, the

information contained in the features from different data

sources are inherent different. Ideally, the data sources that

are more informative should be given higher weights, which

will not only help obtaining the more important information,

but also reducing the impact of noise. In this section, we

propose a data source weight learning approach to obtain

optimal weights.

Before introducing the process of weight learning, we first

introduce a m×m similarity matrix C (m is the sample size)

:

196

C(i, j) =

⎧⎪⎨
⎪⎩

1 if the i-th data and j-th data are similar

0 no preference

−1 if the i-th data and j-th data are dissimilar

It should be noted that ”similar” ”dissimilar” in similarity

matrix C both reflect the relationship between i-th data and

j-th data. The general idea of weight learning is to first use

PCA4[8] to obtain projections Φk = XkT

uk individually for

each data source where uk is given by PCA, and then obtain

the optimal weights by finding which projection feature

spaces Φk can better satisfy the similarity matrix C. Further,

we define a relationship similarity matrix for the k-th data

source as follows:

Sk(i, j) = |C(i, j)| × (Φk(i)Φk(j)T), (8)

where Φk(i) means the i-th data’s vector in the k-th source’s

projection feature space, and Φk(i)Φk(j)T computes the

similarity between i-th data and j-th data in the k-th source’s

projection feature space. |C(i, j)|=1 if and only if the i-
th data and the j-th data have relationship, regardless it

is ”similar” or ”dissimilar”. And if there is no relationship

between the i-th data and the j-th data, Sk(i, j)=0. Thus, we

call Sk as relationship similarity matrix. Moreover, since Sk

has zero mean as in PCA, Sk(i, j) > 0 if and only if the i-th
data and the j-th data are similar, and Sk(i, j) < 0 iff the i-th
data and the j-th data are dissimilar. Ideally, the relationship

similarity matrix should have the same value as the similarity

matrix. Thus, given relationship similarity matrix Sk from all

sources where k = 1, 2, ...p, the objective function is to find

a linear combination that could best satisfies the similarity

matrix C:

min
w1,w2,...,wp

||(
p∑

k=1

wkSk)− C||2F
s.t.

p∑
k=1

wk = 1, wk ≥ 0,
(9)

where || ∗ ||2F is the Frobenius norm. By solving Eq.9, the

optimal weights are obtained, which can then be used in

Eq.6 to improve the performance of feature selection.

V. EXPERIMENTS

In this section, we apply the proposed WS-HFS frame-

work to handle the task of Web service clustering. State of

the art approaches will be applied to compare with WS-

HFS, and the performance of the proposed weight learning

approach will also be evaluated.

4Principal Component Analysis (PCA): A widely used approach in
dimensionality reduction.

A. Experiment Setup

To evaluate the performance of Web service clustering

approaches, we crawl 15,361 real Web services from the

Internet. For each Web service, we get the data of service

name, service provider, WSDL document, and tag. For the

convenience of comparison, we employ two data sources,

i.e., WSDL documents and tagging data, to cluster Web

services. In particular, we publicize the crawled dataset,

which can be downloaded via http://www.zjujason.com.

As the manual creation of ground truth is an expensive

process, we randomly select 228 Web services from the

dataset we crawled to evaluate the performance of Web

service clustering. We perform a manual classification of

these 228 Web services to serve as the ground truth for the

clustering approaches. Specifically, we distinguish the fol-

lowing categories: “Weather”, “Stock”, “SMS”, “Finance”,

“Tourism”, and “Email”. There are 33 Web services in

”Weather” category, 25 Web services in “Stock” category,

37 Web services in “SMS” category, 33 Web services in

“Finance” category, 56 Web services in “Tourism” category,

24 Web services in “Email” category. 20 Web services are

randomly selected from other categories as noise in our

experiment. Limited by space, we don’t show the detailed

information of these Web services. For WSDL documents

and tagging data source, each feature represents one word

and the feature value reflects the presence or absence of the

word in the document or tag. In particular, the widely used

k-means [7] is chosen as the clustering algorithm due to its

efficiency.

B. Evaluation Metric

To evaluate the performance of Web service clustering,

we introduce four metrics: Precision, Recall, Purity, and

NMI (Normalized Mutual Information), which are widely

adopted in the information retrieval community. Given a set

of labeled classes C = {c1, c2, ...cj} and the clustered results

W = {w1, w2, ..., wk}, Precision and Recall are defined as

the following shows:

Precisionwi
=

succ(wi)

succ(wi) +mispl(wi)
(10)

Recallwi =
succ(wi)

succ(wi) +missed(wi)
, (11)

where succ(wi) is the number of services successfully

placed into cluster wi, mispl(wi) is the number of services

that are incorrectly placed into cluster wi, and missed(wi)
is the number of services that should be placed into wi but

are placed into another cluster.

The metric Purity evaluates the purity of the clustering

result, and is defined as follows:

Purity(W,C) =
1

N

∑
k

max
j
|wk ∩ cj |, (12)

197

(a) Precision (b) Recall

Figure 3: Web Service Clustering Performance Comparison via Precision and Recall

�� �� �� �� �� �� 	�
� �� ���

���

���

���

��	

��

���

�

���������

�
��

���

�

�

��������
���������
����
�!�"#!

(a) Purity

�� �� �� �� �� �� 	�
� �� ���

����

���

����

���

����

��	

��	�

��

���������

�
	

�

�

���$���
����$���
����
���"#�

(b) NMI

Figure 4: Web Service Clustering Performance Comparison via Purity and NMI

where N means the number of all services, and |wk ∩ cj | is

the number of services that both belong to wk and cj . Bad

clusterings have purity values close to 0, a perfect clustering

has a purity of 1. And the metric NMI (Normalized Mutual

Information) evaluates the clustering performance in the way

of information entropy theory. The definition of NMI is as

follows:

NMI(W,C) =
I(W,C)

[H(W) +H(C)]/2
(13)

I(W,C) =
∑
k

∑
j

|wk ∩ cj |
N

log
N |wk ∩ cj |
|wk||cj | , (14)

H(W) =
∑

k
|wk|
N

log
|wk|
N

,H(C) =
∑

j
|cj |
N

log
|ck|
N

,

(15)

where I(W,C) is the mutual information between W and

C, while H(W) and H(C) are the information entropy for

normalization. The value of NMI is in the range of (0,1),

the higher means better.

C. Performance of Web Service Clustering

In this section, we apply the proposed WS-HFS frame-

work to cluster Web services, and compare the performance

of four Web service clustering approaches, including three

state-of-the-art clustering approaches and the proposed WS-

HFS. The details of these algorithms are given below:

1) WCluster. In this approach, Web services are clustered

according to the semantic WSDL-level similarity be-

tween Web services. This approach has been adopted

in some related works [2], [5], [12].

2) WTCluster. In this approach, both WSDL documents

and the tagging data are employed to cluster the

Web services according to the composite semantic

similarity [2].

3) WT-LDA. In this approach, LDA model is employed

to cluster Web services based on WSDL documents

and tagging data [3].

4) WS-HFS. In this approach, Heterogeneous features

projected in the unified subspace are utilized to com-

pute the service similarity for the purpose of cluster-

ing. In particular, weight learning is not employed.

Figure 3 shows the performance comparison of above 4

Web service clustering approaches in terms of precision and

recall. From Fig.3, it can be observed that the performance

of WCluster is the worst in most cases. This is because only

WSDL documents are utilized in WCluster. Among the other

198

(a) Precision (b) Recall

Figure 5: Impact of Source Weight in terms of Precision and Recall

10 20 30 40 50 60 70 80 90 100

0.4

0.5

0.6

0.7

0.8

0.9

1

Dimensions

P
ur

ity

Lambda=0
Lambda=1
Lambda=0.5
WL

(a) Purity

10 20 30 40 50 60 70 80 90 100

0.4

0.5

0.6

0.7

0.8

0.9

1

Dimensions

N
M

I

Lambda=0
Lambda=1
Lambda=0.5
WL

(b) NMI

Figure 6: Impact of Source Weight in terms of Purity and NMI

three approaches which utilize both WSDL documents and

tagging data, the proposed WS-HFS is the best, while the

WTCluster is the worst. In WTCluster, it simply extracts the

keywords from WSDL documents as the selected features,

which is quite naive and straightforward. Compared with

WTCluster, the feature selection strategy of the proposed

WS-HFS considers the connections among heterogeneous

data sources, which eventually improves the performance of

clustering.

Figure 4 shows the clustering performance comparison in

terms of purity and NMI. From Fig. 4(a), it can be observed

that the purity value of each approach first rises then falls

with the increase of the dimension (i.e., number of feature).

This is because when the number of selected features is

too small, the information is not enough to make accurate

clustering decision. While the number of selected features is

large, there are noise features which impact the performance

of clustering. Moreover, the proposed WS-HFS outperforms

the other three approaches in all cases. Similarly, the trend

of NMI value in Fig.4(b) first rises then falls, and the

performance of WS-HFS is still the best in terms of NMI.

D. Evaluation of Weight Learning

In this section, we evaluate the performance of weight

learning by comparing the performance of WS-HFS with

different weight settings. Since only two data sources are

utilized in the experiment, i.e., WSDL documents and tag-

ging data, a parameter λ is employed to reflect the weight

of WSDL documents and the weight of tagging data is set

to (1−λ). In particular, we implement four versions of WS-

HFS:

1) λ = 0, where only tagging data are employed for Web

service clustering.

2) λ = 1, where only WSDL documents are employ for

Web service clustering.

3) λ = 0.5, where the weights of WSDL documents and

tagging data are equal.

4) weight learning (WL), where weight learning pre-

sented in Section 4 is employed, and an optimal λ is

obtained for Web service clustering.

Figure 5 shows the clustering performance of WS-HFS

with different weight settings in terms of precision and

recall. It can be observed that WS-HFS with λ = 0.5 and

weight learning outperform those with λ = 0 or λ = 1.

This is because only WSDL documents are employed when

199

λ = 1, and only tagging data are employed when λ = 0.

Further, the WS-HFS with an optimal weight outperforms

the one with λ = 0.5 in most cases, since more informa-

tive data sources are given higher weights through weight

learning.

Figure 6 shows the clustering performance comparison

in terms of purity and NMI. Similar to Figure 5, WS-HFS

with an optimal weight and λ = 0.5 largely outperform the

other two approaches, which demonstrates the importance

of heterogeneous data sources integration in Web service

mining. From Figure 6, it can also be observed the impact

of dimensionality (number of features) to the performance of

clustering. Similar to the trend in Figure 4, the performances

of different approaches first rise then fall with the increase

of dimension. Furthermore, WS-HFS with an optimal weight

outperforms the other three approaches in all cases in terms

of purity and NMI.

VI. CONCLUSION

With the explosive growth and popularity of Web services,

more and more heterogeneous data are generated in the

process of Service Computing (e.g., service invocation,

service composition, etc.). A single data source may not be

informative enough for the complex tasks in Web service

mining. Usage of multiple data sources for Web service

mining will be the trend in the near future.

In this paper, we propose a heterogeneous feature selec-

tion framework for Web service mining, referred to as WS-

HFS, which captures the knowledge from multiple sources

by projecting multiple feature spaces onto a unified feature

subspace. Moreover, a data source weight learning approach

is proposed to improve the performance of WS-HFS, by

computing optimal weights for different data sources. Exten-

sive experiments conducted over real Web services demon-

strate the effectiveness of the proposed WS-HFS framework

and weight learning approach.

VII. ACKNOWLEDGMENTS

This research was partially supported by the Na-

tional Technology Support Program under the grant of

2011BAH16B04, the Natural Science Foundation of China

under the grant of No. 61173176, National High-Tech Re-

search and Development Plan of China under the Grant No.

2013AA01A604.

REFERENCES

[1] G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani.
An approach for qos-aware service composition based on
genetic algorithms. Proceedings of the 7th annual conference
on Genetic and evolutionary computation, pages 1069–1075,
2005.

[2] L. Chen, L. Hu, Z. Zheng, and J. Wu. Wtcluster: Utilizing
tags for web services clustering. International Conference on
Service Oriented Computing, pages 204–218, 2011.

[3] L. Chen, Y. Wang, Q. Yu, Z. Zheng, and J. Wu. Wt-
lda: User tagging augmented lda for web service clustering.
International Conference on Service Oriented Computing,
pages 162–176, 2013.

[4] L. Chen, J. Wu, H. Jian, H. Deng, and Z. Wu. Instant recom-
mendation for web services composition. IEEE Transactions
on Service Computing, Preprint, 2013.

[5] K. Elgazzar, A. E. Hassan, and P. Martin. Clustering wsdl
documents to bootstrap the discovery of web services. Inter-
national Conference on Web Services, pages 147–154, 2009.

[6] Z. George and B. Athman. Web service mining. Springer,
2010.

[7] J. A. Hartigan and M. A. Wong. Algorithm as 136: A k-
means clustering algorithm. Journal of the Royal Statistical
Society. Series C (Applied Statistics), 28(1):100–108, 1979.

[8] J. Ian. Principal component analysis. John Wiley & Sons,
online, 2005.

[9] G. Kang, J. Liu, M. Tang, X. Liu, B. Cao, and Y. Xu. Awsr:
Active web service recommendation based on usage history.
IEEE International Conference on Web Services, pages 186–
193, 2012.

[10] T. Liang, L. Ji, L. Chen, J. Wu, and Z. Wu. Collaborative
qos prediction via matrix factorization and topic model.
International Conference on Service-Oriented Computing and
Applications, pages 282–289, 2013.

[11] W. Lin, W. Dou, X. Luo, and C. Jinjun. A history record-
based service optimization method for qos-aware service
composition. IEEE International Conference on Web Ser-
vices, pages 666–673, 2011.

[12] W. Liu and W. Wong. Discovering homogeneous service com-
munities through web service clustering. Service-Oriented
Computing: Agents, Semantics, and Engineering, pages 69–
82, 2008.

[13] C. Platzer, F. Rosenberg, and S. Dustdar. Web service clus-
tering using multidimensional angles as proximity measures.
ACM Transactions on Internet Technology, 9(3):1–26, 2009.

[14] J. Wu, L. Chen, Y. Feng, Z. Zheng, M. Zhou, and Z. Wu.
Predicting quality of service for selection by neighborhood-
based collaborative filtering. IEEE Transactions on System,
Man, and Cybernetics, Part A, 43(2):428–439, 2013.

[15] H. Yang, J. Chen, X. Meng, and B. Qiu. Dynamically
traveling web service clustering based on spatial and temporal
aspects. Lecture Notes in Computer Science, 4802:348–357,
2007.

[16] Q. Yu. Place semantics into context: Service community
discovery from the wsdl corpus. In International Conference
on Service Oriented Computing, pages 188–203, 2011.

[17] Q. Yu and M. Rege. On service community learning: A
co-clustering approach. In Internatonal Conference on Web
Services, pages 283–290, 2010.

[18] Z. Zheng, H. Ma, M. R. Lyu, and I. King. QoS-aware
Web service recommendation by collaborative filtering. IEEE
Transactions on Service Computing, 4(2):140–152, 2011.

200

