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Abstract—Application Programming Interfaces (APIs)1, which
are emerging web services in general, are increasing with a rapid
speed in recent years. With so many APIs, many management
platforms have been developed and deployed, leading to the
boom of API markets, that are similar to the mobile App
markets. Meanwhile, it has become more and more difficult to
select and manage APIs. In reality, most existing management
platforms typically recommend currently popular APIs to de-
velopers2. However, the fact that popularity of API varies over
time is ignored in those platforms, leading to the difficulty of
recommending APIs that are just released but may be popular
in the near future. To tackle this challenge, an approach of
predicting the popularity of APIs is proposed in this paper.
Predicting the popularity of API can not only be used for API
ranking, recommendation and selection, but also make it more
convenient for API providers and consumers to manage or select
API respectively. In this paper, we propose a time-aware linear
model to predict the API popularity, using time series feature
of APIs and API’s self-features such as its’ provider ranking
and description features, which are called heterogeneous features
in our paper. Comprehensive experiments have been conducted
on a real-world ProgrammableWeb dataset with 613 real APIs.
The experimental results show that our model has a better
performance, when compared with some other state-of-the-art
prediction models.

I. INTRODUCTION

Web services are programmable modules with standard in-

terface descriptions that provide universal accessibility through

standard communication protocols [1]. While many prominent

Web service providers such as Google, Youtube and Facebook,

are also opted to externalize their business interaction throuth

APIs. To some extent, APIs are a kind of RESTful Web

services. Besides, APIs can be invoked over the Internet using

standard protocols, which will facilitate and accelerate the Web

to be programmable. On this programmable Web, developers

can easily create their mashups by combining various APIs to

solve all types of problems. Currently, APIs and mashups are

the primary manifestation of the programmable Web.

Compared with conversional Web services, APIs are

lightweight and easier to use. Besides, an API architecture

attempts to create one-to-many, reusable interfaces. This is

1In general, API includes local API and web API. In our paper, only web
API is considered. If not specially declared, web API is called API in short.

2In our paper, the popularity of API is defined as the number of mashups
that consist of the API (or are built on the API).

Fig. 1: Framework of an API market

different with SOA which focuses primarily on limited number

of tight integrations for specific use-cases [2]. The number of

APIs and mashups is increasing since 2005 and this trend

has been dramatically accelerated over the past few years.

According to ProgrammableWeb.com3, until November 2014,

the number of APIs and mashups have reached to 10634 and

6049, respectively.

Besides making the Web programmable, APIs also have

great commercial values. They can provide uniform data

and transaction interfaces to internal and external developers

or customers, for the sake of improving data access and

transactions. And mobile computing in particular are push-

ing increasing amounts of economic transactions from web

browsers to API-driven interactions, although both of which

continue to grow. Now, more and more big companies are

joining the API Economy. Take eBay, an online auction and

shopping website in which people can buy a broad variety

of goods and services worldwide, as an example. It provides

mobile, web and other client interfaces as an API, enabling

transactions to be conducted from anywhere. Consumers can

buy and pay their products not only on browers but also on

mobiles. It is said that eBay has a vast ecosystem of power-

seller and re-seller APIs that drives over 60% of its listings.

3http://www.programmableweb.com/
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Another example is that Twitter has 13 billion calls through

its APIs per day in 2012.

Recently, more and more Web sites dedicated to API market

are emerging, such as Mashape4. Figure 1 describes the

framework of such platform. There are mainly four roles in

the API market. The API market is a repositoriy of APIs.

This platform can be deployed on the cloud. API providers

publish their own APIs on the cloud and they can get some

profits if they want. Application developers which are also

called consumers can invoke the APIs from the cloud, and

combine them to build their applications or mashups. The

developers also need to pay for using an API. Client users

then can invoke the API conveniently from all kinds of devices,

such as smart phones and personal computers. The manager is

the administrator that manages the whole platform. They can

recommend the most popular APIs to a special client, set a

rule to rank all the APIs, and monitor the trend of APIs, and

so on.

With the growing number of APIs, the need to search and

manage APIs becomes more and more urgent. From our obser-

vation, those current API platforms such as ProgrammableWeb

and Mashape manage APIs just through comparing the number

of mashups which use the API at a time, or the number

of followers. In essence, APIs used by more mashups or

followered by more users are regarded as more popular. In

our paper, the number of mashups that use a specific API is

called the popularity of that API. One major drawback of those

methods is that the time series factor is not considered. For

traditional service-oriented computing, most existing service

management approaches adopt some ineffective features of

service, such as failure rate and service popularity to measure

the quality of service, and recommend service according to

the QoS. Most works predict the QoS purely based on the

historical records, but few take into account the time. However,

the QoS of web services or the popularity of API varies in

time.

Predicting the popularity of APIs will benefit API ranking,

recommendation and selection. It can also help API providers

more effectively manage APIs. For example, providers can

give a higher value to an API which is recently released, but

have a tendency to be of high popularity in the near future.

This will enable users to select an appropriate API which is

newly released, although the popularity is still zero.

There are have been recent efforts towards building models

to predict the popularity using various techniques. Szabo and

Huberman(S-H) [3] observed that the feature popularity of a

given content is strongly correlated with its early popularity

on a reference date. But this model completely ignores the

influence of specific information of the content itself. For

example, two different pieces of content may have very similar

popularity at the same reference date and yet exhibit distinct

popularity behaviors thereafter. In our context, two real APIs’

popularity trend are shown in Figure 2. After 40 months since

uploaded, the Youtube API was used by 288 mashups, while

4https://www.mashape.com/
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(a) Popularity of Youtube API
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(b) Popularity of Twilio API

Fig. 2: Popularity of Youtube and Twilio in the lifecycle

the Twillo API was used by 292 mashups, the popularity of

these two API are similar at the refence date. Thus the S-

H model would predict that both APIs would have similar

popularity on the 69-th month since upload. Yet they end up

with very different total popularity: the Youtube API is used

by 442 mashups, whereas, the popularity of Twilio API is 307

in 69-th month. This is because the patterns of these two APIs

are quite distinct.

In this paper, we take the time factor into account and

propose a time-aware model to predict the popularity of API,

as the popularity is varied from time to time. As soon as an

API is released, the popularity of this API is zero. But with

time goes on, the popularity will usually increase. Besides, we

think specific information of API itself has a great effect on the

pattern of its popularity. So we analyze the effect of specific

information of API, especially the text features of API. In our

paper, the time features, API’s numerical features and textual

features are called heterogeneous features. We propose a

linear regression model to integrate the heterogeneous features

together.

We evaluate our model by comparing it against the S-H

model, on three datasets from ProgrammableWeb. The main

contributions of this paper are summarized as follows:

• To our best knowledge, this is the first paper to model

and tackle the problem of API popularity prediction.

• A linear prediction model integrating heterogeneous fea-

tures is proposed in our paper to predict the popularity of

API. Specifically, we analyze the information of API and

find out many factors that have an effect on the popularity

of API.

• Comprehensive experiments show that our model has a

better performance compared with other state-of-the-art

methods.

The remainder of this paper is organized as follows. Section

II introduces the related work of this paper. Section III

describes the datasets we will use in our experiment. Two

classical models and our proposed model are presented in

Section IV. Section V shows the experimental results and

analysis. Finally, we conclude this paper and give some future

directions in Section VI.
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II. RELATED WORK

In the realm of service computing, a number of literatures

are focusing on issuses such as service discovery, service

selection, service recommendation and service composition,

etc. [4], [5], [6], [7], [8], [9], [10]. One work which is related to

our’s is [11], in which the authors proposed a time-aware per-

sonalized QoS prediction framework for Web services using

tensor factorization. And in [12], time information is integrated

into the similarity measurement and the QoS prediction, and

a hybrid personalized random walk algorithm is employed to

handle data sparsity.

With the emmergence of APIs, many focuses are trans-

fering from WSDL-based Web services to APIs. [13] and

[14] proposed a framework (or model) for the discovery of

APIs. [15] provided a linked data perspective of Web APIs

to enhance effective multi-perspective Web APIs search for

fast development of web mashups. [16] and [17] proposed an

approach for ranking the APIs. Services that are composed

by APIs are called Mashup, and more and more literatures

are focusing on Mashup. Predicting the popularity of API can

also help developers select appropriate APIs to compose their

Mashup. Cao et al. [18] proposed an approach to recommend

Mashup services to users based on user interest and social

network of services. Huang et al. [19] have had an empirical

study of ProgrammableWeb, and they are building a service

ecosystem based on Web APIs and mashups. In [20] the au-

thors presented a method to extract service evolution patterns

for Mashup creation by exploiting Latent Dirchlet Allocation

(LDA) and time series prediction. And they proposed an

innovative three-phase network prediction approach (NPA) for

service recommendation based on network in [21].

To the best of our knowldge, few works take the time

series into account to predict the popularity of API currently.

Most service selection and recommendation are based on QoS.

However, large-scale real-world Web service QoS datasets

available for studying the prediction accuracy are difficult to

collect. Besides, in reality the QoS of service varies from time

to time according the invocation time, network condition of

users, etc. In this paper we focus on predicting the popularity

of API, for service (API) ranking and selection.

There are have been several efforts towards predicting the

popularity of online content. For example, Szabo and Huber-

man [3] observed a linear correlation between the early and

future popularity of online content, they use the popularity at

a reference time to predict the future popularity. [22] proposed

a model based on reservoir computing to predict the near

future popularity of videos based on popularity data from

the previous days. However their approach can be affected

by randomization effects. [23] proposed a linear model to

predict the popularity of YouTube Videos, but the information

of YouTube itself is not considered. [24] used Cox proportional

hazard regression model to predict the popularity of online

content. This paper is rooted in survival analysis and inferring

the likelihook with which the content will be popular.

III. DATASET CHARACTERISTICS

A. Dataset

ProgrammableWeb is one of the most popular platforms

that has collected lots of APIs and mashups used in Web and

mobile applications. It records the daily evolution of the global

API economy. We crawled all the APIs and mashups until Nov.

2014 from ProgrammableWeb. We first desscribe the dataset

and provide some statistical analysis.

TABLE I: An Overview of ProgrammableWeb Data

Number of APIs 10634
Number of mashups 6049
Number of users 52511
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Fig. 3: (a) The growth trend of API since Nov. 2005 (b) The

number and average popularity of Top-20 API categories

Table I is an overview of the dataset. Althouth the number

of APIs and mashups are both large, our analysis reveals that

most of the APIs in ProgrammableWeb are not used in any

mashups. So the popularity of these APIs are always zero. In

our experiment, we will filter out these APIs.

Figure 3(a) describes the trend of API growth, we can see

that most APIs are created in the last 4 years. In 2005 there

was just one API (Google Maps) in ProgrammableWeb, but

until 2014, the number has reached to more than 10000, and

it is increasing dramatically.

Figure 3(b) shows the number and average popularity of

API in different categories. From this figure, we can observe

that API in categories “Mapping”, “Photos” and “Video” have

a higher popularity than others.

B. Statistical Analysis

In this section, we will analyze the features of API that may

have an effect on its popularity. From our analysis, we find at

least four factors are related to the popularity of API. These

are provider rank, the information integrity, the category and

the followers number of API. The scatter plots of those factors

are shown in Figure 4.

From Figure 4(a), we can find that the lower the rank of

provider, the lower of its popularity. In our paper, the provider

rank is attained from the website Alexa.com, which provides

commercial web traffic data and the rank of many websites.

The rank of the API provider’s website can represent the

quality of provider to some extent. Before an API is released,
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(a) The effect of API’s provider rank
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(b) The effect of API’s information integrity
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(c) The effect of API category

Fig. 4: The scatter plot of some factors against the popularity of APIs. (a) Relationship between API’s provider rank and the

popularity of API. (b) Popularity of API plotted against API’s information integrity. (c) The effect of API category to API’s

popularity, the popularity is sorted by the average popularity of each category.

the provider is required to fill in some relevant information

of that API such as it’s category, description, homepage, and

so on. In our paper, API information integrity means the

degree of details providers describe the API. For example, for

Twilio API, the provider fills in 14 relevant informations in

ProgrammableWeb, so the information integrity of Twilio API

is 14. Figure 4(b) shows that the API with a higher information

integrity may have a higher popularity. That is, the provider of

API that with a higher information integrity is more prudent

to release the API, the provider and the API itself may be of

higher quality. Figure 4(c) gives a hint that the category of

API may also has an effect on it’s popularity.

IV. POPULARITY PREDICTION MODELS

A. Evaluation Metric

As suggested in [23], we use relative squared error (RSE)

to evaluate the models in our paper. Here we not use other

evaluation metrics for the reason that, the popularity of API

varies greaty from one to other. The relative error are more

relevant than the absolute error. Besides, square always gives

a positive value, and emphasizes on larger differences. This is

also suitable for our popularity prediction context.

Let N(a) be the total number of mashups that have used

API a, namely the popularity of API a. Let N(a|t) be the

total number of mashups that has used API a from the first

t months. As shown in Figure 2(a), after 40 months sinces

uploaded, the Youtube API was used by 288 mashups. It can

be represented as N(Y outube|t = 40) = 288. Then the RSE

of API a’s prediction can be defined as this form:

RSE =

(
N̂(a, tt|tr)
N(a, tt)

− 1

)2

(1)

If we denote the collection of APIs by C, the mean relative

squared error(mRSE) can be defined as this formular:

mRSE =
1

|C|
∑
a∈C

(
N̂(a, tt|tr)
N(a, tt)

− 1

)2

(2)

We use the mRSE to evaluate our model, comparing with

the S-H and LR model. The less the mRSE is, the better

performance the model will achieve.

B. Szabo-Huberman (S-H) Model

After performing a logarithmic trasformation on the popu-

larity of instances, Szabo and Huberman [3] found a strong

linear correlations between the early and future popularity,

with a normally distributed noise. This means that the more

pupular instances are at the beginning, the more popular they

will also be in the future. In our context, the connection

between early and future popularity can be described as:

lnN̂(a, tt|tr) = ln [r(tr, tt)N(a, tr)] + ξ(tr, tt) (3)

where N̂(a, tt|tr) is the predicted popularity of API at tar-

get time tt based on the popularity at reference time tr,

r(tr, tt) accounts for the linear relationship between the log-

transformed popularity at different times, and ξ is a noise term

that accounts for the natural variances in individual content

dynamics beyond the expected trend in the model and is drawn

from a fixed distribution with mean zero.

Briefly, the future popularity of an API can be expressed

as:

N̂(a, tt|tr) = αtr,tt ·N(a, tr) (4)

where, αtr,tt is independent of the API a. And αtr,tt =
r(tr, tt)e

ξ(rf ,rt). This means that the future popularity of API

a is just related to its early one by a constant factor.

When given the reference date t and the training set C of

videos, combining Eq. (2) and Eq. (4), we can get the value

of αtr,tt :

αtr,tt =

∑
a∈C

N(a,tr))
N(a,tt)∑

a∈C

(
N(a,tr))
N(a,tt)

)2 (5)

When the αtr,tt is known, according to Equation 4, we can

easily get the popularity of API a in future, just multiplying

the popularity in the reference date N(a, tr) by αtr,tt .
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The computaional complexity of this model is O(n) with

n training data. So this model is simple and has a perfect

scalability.

C. Linear Regression (LR) Model

The S-H model just uses the popularity of API in a specific

date (tr) to predict the future popularity. In other words, it just

utilizes only one piece of time series of API. In our dataset,

we can get the delta of API popularity at each time series. So,

here we try to predict the popularity of API at tt as a linear

function of these popularity deltas at each month.

Specifically, let xi(a) be the number of mashups that use

API a on the i-th month since its released (xi(a) = N(a, i)−
N(a, i− 1)). The feature vector of API is defined as:

Xtr (a) = (x1(a), x2(a), · · · , xtr (a))
T

(6)

and the prediction value of popularity of API a at tt can be

expressed as:

N̂(v, tt|tt) = Θ(tr,tt) ·Xtr (v) (7)

where Θ(tr,tt) = (θ1, θ2, ·, θtr ) presents the vector of model

parameters and depends only on tr and tt. Given a traing set

C, tr, tt, we can define our oprimization problem as:

argmin
Θ(tr,tt)

1

|C|
∑
a∈C

(
Θ(tr,tt) ·Xtr (a)

N(a, tt)
− 1

)2

(8)

Let X∗
v = Xtr(a)

N(a,tt)
, we can express the optimization problem

as:

argmin
Θ(tr,tt)

1

|C|
∑
a∈C

(
Θ(tr,tt) ·X∗

v − 1
)2

(9)

which is an ordinary least squares (OLS) problem that can be

solved via a singular value decomposition. The computional

complexity of this optimization problem is O(np2), where n
is the number of training examples and p the number of model

parameters.

From another aspect, S-H model uses the popularity at

tr, represented by N(tr), while LR model uses a series of

API’s delta popularity at each month since released date to

the reference date, represented by (x1(a), x2(a), · · · , xtr (a)).
Here x1(a)+x2(a)+ · · ·+xtr (a) = N(tr). So the S-H model

is a special case of this LR model, with the added restriction

that θ1 = θ2 = · · · = θtr .

D. LR-HF Model

The S-H model utilizes one piece of time series of API,

while the LR model utilizes many time series of API until the

reference date tr. Both of these two models just use the time

features of API, but ignore other features. Form the analysis of

Section III, we find other features of API besides time features

have an effect on the popularity.

Our LR-HF model utilizes all the features of API that may

affect it’s popularity. Since the features are from different

aspects and have different data structures, we call them hetero-

geneous features. The heterogeneous features can be mainly

devided into four types:

• Time features: These features are the same as features

used in LR model. We devided the time from API’s

released time to the reference date tr into many interval

by month. The delta popularity in each interval can be a

feature.

• Numerical features: The provider rank and the informa-

tion integrity of API are both numerical features.

• Categorical features: Each API in our dataset belongs

to a specific category, such as mapping, tools, or eCom-

merce.

• Textual features: Each API has a detailed description,

which belongs to textual features.

After inducing those heterogeneous features, and refering to

Eq.(8), the optimization problem should be transformed into

this form:

argmin
Θ(tr,tt)

1

|C|
∑
a∈C

(
Θ(tr,tt) ·X∗

v − 1
)2

+ λ
∥∥Θ(tr,tt)

∥∥2
2

(10)

where λ is the penalty coefficient, which controls the degree

of penalty, X∗
v = Xtr(a)

N(a,tt)
and

∥∥Θ(tr,tt)

∥∥2
2

is the regularization

term to prevent overfitting, the regression is also called ridge

regression.

V. EXPERIMENT

A. Setup

In our experiment, the target date tt varies from 24 months

to 48 months. So we extract the APIs whose releasing date is

between 2005 and Nov. 2010, to ensure that each API has a

span of 4 years’ time series. Besides, we find the popularity of

some APIs in our dataset is always zero, such APIs are beyond

our consideration. Lastly, we get a dataset of 613 APIs.

To make our experiment more convincing, we split our

dataset into two subsets, the popular dataset and the junk

dataset.

• Popular: We define that the APIs whose popularity are

greater than 5 until Nov. 2014 belong to popular dataset.

• Junk: On the other hand, those APIs whose popularity

are less than 5 until Nov. 2014 belong to the junk dataset.

We assume that the qualities of those APIs used by

only few mashups are low, and the trend of those APIs’

popularity are nearly smooth.

Our experiment is conducted on the basis of the full dataset,

as well as the popular and junk dataset, then we have a

comparison on those three datasets.

B. Feature Extraction and Selection

We can denote the feature vector as xT = (xT
n ,x

T
c ,x

T
t ),

where xT
n represents the numerical features, xT

c the categorical

features, and xT
t the textual features. The numerical features

includes information integrity, provider rank, and the popular-

ity at each time interval. It is easy to introduce the numerical

features in our model without any specific transformation,

except for a normalization. But the categorical and textual

features need to be transformed to numerical features. In our

dataset, the categorical features consist of one or two words,

we represent the categorical features by binary code.
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TABLE II: Model prediction errors (mRSE) with various tr and tt on the full dataset.

mRSE Methods tr = 1 tr = 3 tr = 5 tr = 7 tr = 9 tr = 11 tr = 13

tt = 24

S-H 0.3987 0.3236 0.2750 0.2283 0.1867 0.1525 0.1183

LR 0.3944 0.3240 0.2783 0.2320 0.1894 0.1540 0.1195

LR-HF1 0.3121 0.2684 0.2364 0.2049 0.1698 0.1448 0.1166

LR-HF2 0.2151 0.2010 0.1886 0.1732 0.1523 0.1326 0.1104

tt = 36

S-H 0.4483 0.3824 0.3404 0.2933 0.2537 0.2214 0.1919

LR 0.4472 0.3838 0.3434 0.2976 0.2569 0.2217 0.1931

LR-HF1 0.3792 0.3347 0.3017 0.2679 0.2313 0.2081 0.1875

LR-HF2 0.2470 0.2366 0.2228 0.2104 0.1933 0.1756 0.1605

tt = 48

S-H 0.4577 0.3990 0.3556 0.3153 0.2785 0.2494 0.2218

LR 0.4584 0.4005 0.3564 0.3186 0.2835 0.2527 0.2265

LR-HF1 0.3912 0.3553 0.3195 0.2905 0.2588 0.2377 0.2179

LR-HF2 0.2607 0.2507 0.2350 0.2241 0.2123 0.1973 0.1858

The description of API in our dataset consits of a bag of

words that describe the functionality. Before we apply it to our

model, several nature language preprocessing tasks should be

done.

1) Case-folding and tokenization. Firstly, we reduce all

letters of API’s description to lower case, and then split

the description into a bag-of-words using the tokenizer,

for instance by using white-spaces.

2) Pruning. Then we filter the stopwords that are meaning-

less for representing the service, such as is, very, should,
etc. Besides, we just keep the nouns and adjectives using

a part-of-speech tagger.

3) Stemming. In the third step, we strip the word to obtain

the stem word. For example, map, mapping, maps,and

mapping have the same stem word map.

4) Spell Correcting. Lastly, we find some words in de-

scriptions that may be misspelled. So we correct these

words such as communicte, communicata to be commu-
nicate based on edit distance.

After conducting those processes, we get a corpus of all the

APIs’ description. Before the corpus can be used in the LR-

HF model, it need to be transformed into numerical vectors.

In our paper, the tf-idf approach is adopted.

In our processing we find there are nearly 68 different

categories and 2653 distinct words. We need to conduct a

feature selection on those features. We select K(K = 20) best

features based on variance. Features that with small variance

will be removed.

C. Performance Evaluation

In this section, we will show the experimental results of S-

H, LR and LR-HF models. S-H is the baseline model and LR

is a model based on S-H model, utilizing more time features.

The experiment only adding the textual features is called LR-

HF1, while the experiment with all the heterogeneous features

is called LR-HF2. All the experiments are conducted on three

datasets, and the target date tt varies from 24, 36 to 48 months.

Table II shows the mRSE results of different prediction

methods on prediction value. We set reference date tr as 1, 5,

8 and 10. The target date tt is setted as 24, 36 and 48 months.

We set λ as 0.2. To prevent overfitting, each experiment was

conducted using random permutations cross validation, which

is a good alternative to KFold cross validation that allows a

finer control on the number of iterations and the proportion

of samples on each side of the train/test split. We first shuffle

the dataset and then split it one by one, 50% of the dataset

are used to training the parameter, and 25% of the dataset are

used for cross validation, the rest are for testing.

The experimental results of Table II show that:

• Under all experimental settings, our LR-HF method al-

ways obtains a smaller mRSE values, which indicates bet-

ter prediction accuracy. Especially, LR-HF2 has a smaller

mRSE than LR-HF1. That means when introducing all

heterogeneous features, we can get a better performance

than just introducing the textual features.

• Our LR-HF model performs particularly well on the

condition that tr is small, the mRSE of LR-HF2 has

reduced to nearly 0.2151. With the increase of tr, the

performance gap between our model and state-of-the-art

models becomes smaller. While our model still has a

better performance.

• For a specific model, with the increase of tr, the pre-

diction accuracy also achieves significant enhancement,

since larger tr provides more time-serial features for

prediction.

• Fixing the value of tr, we can find that for each method,

the mRSE increases with the tt becoming larger, since

larger tt means greater uncertainty of popularity.

Figure 5 depicts the experimental results of four methods on

popular dataset. Figure 5(a) shows the mRSE with tt = 24,

Figure 5(b) shows the mRSE with tt = 36 and Figure 5(c)

shows the mRSE with tt = 48.

Observing from Figure 5, we can clearly find that our model

have an obviously better performance over S-H and LR model,

especially when the gap between reference time and target

time is large. We can also find that the S-H model and LR

model have a so similar performance that two lines even

overlaps. Taking a closer look at it, we can find the LR model
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Fig. 5: Model prediction errors (mRSE) as functions of reference date tr for various target dates tt on popular dataset.
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Fig. 6: Model prediction errors (mRSE) as functions of reference date tr for various target dates tt on junk dataset.

may still have a better performance, that may be caused by

our dataset, because the size of data that has a complete time-

series feature is really small. Besides, we can find that with the

reference time becoming closer to the target time, the mRSE

descreases, for all the four models. In other words, it’s easier

to predict the future popularity if the future is not far away.

What is more, with the reference time becoming closer to the

target time, the advantages of our model over other models

will shrink. For the reason that, it’s enough for S-H or LR

model to use the time features to predict the popularity.

Take Figure 5(a) for an example, the S-H model and LR

model have the same mRSE on the condition that the reference

date is one month. Because, if we only use the first month’s

popularity to predict the future popularity, the S-H and LR

are same model, both model use only one piece of time series

feature. When compared with the experimental results on full

dataset, we can find the performance on popular dataset is

a little poorer than that on the full dataset. For example, in

Figure 5(a), given reference time is one month, the mRSE of

our LR-HF2 model is nearly 0.38, while in Table II, the mRSE

is only 0.22.

Figure 6 depicts the experimental results of four methods on

junk dataset. Figure 6(a) shows the mRSE with tt = 24, Figure

6(b) shows the mRSE with tt = 36 and Figure 6(c) shows the

mRSE with tt = 48. From Figure 6, we can draw a conclusion

that all the four methods have a conspicious improvement on

TABLE III: Impact of λ

mRSE λ = 0.0 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

tr = 1 0.25131 0.24748 0.24746 0.24776 0.24812 0.24846

tr = 5 0.23292 0.22910 0.22921 0.22970 0.23026 0.23084

tr = 10 0.19343 0.18926 0.18962 0.19081 0.19226 0.19379

different experiments and our LR-HF model still have an better

performance, no matter we only introduce textual features or

introduce all the heterogenous features. We can see that if

we just introduce API’s textual features, the improvement is

not too big, when compared with that on full dataset and

popular dataset. However, when all the heterogenous features

are introduced, the improvement is very obvious. The reason

that may cause this state is that the growth rate of junk APIs

are quite slow. That means that the popularity on reference

and one on the target date is almost the same, so prediction

on this dataset is relatively easier. The experimental results on

junk dataset proves that our model is particularly suitable for

predicting the popularity of APIs that not changes frequently.

As shown in Figure 6(a), with the target date tt is 24

months, the mRSE of our LR-HF2 model can be decreased

to nearly 0.08 althouth only the first month’s popularity is

used. And other two model can also have a performance with

mRSE 0.36. On this condition, our LR-HF2 model has a nearly

6 times of performance imporvement.
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D. Impact of λ

With the parameters increase, it is more likely to overfit the

linear model during the training stage. To prevent overfiting,

we use a tuning parameter λ to control the penalty in our

LR-HF model. If λ = 0, our model is a general linear model

which is easy to be overfiting. If λ �= 0, the linear model is

called ridge regression.

To study the impact of parameter λ to our LR-HF2 method,

we set the number of description features is 20, the target date

tt is 36, and we do the experiment on full dataset. We varies

λ from 0 to 1.0 to analyze the impact of λ. Table III shows

the impact of λ. From the table, we can find that the value

of λ really has an impact on the prediction accuracy, and a

suitable λ value will provide better prediction accuracy. On

this condition, we can find that the most appropriate value of

λ is between 0.2 and 0.4. The λ should not be too large or

too small.

VI. CONCLUSION AND FUTURE WORK

Predicting the popularity is of great importance in the

management of API market. The more accurate the prediction

is, the greater profits the provider and consumers will get. In

this paper, we firstly analyze some factors that may have an

effect on the popularity of APIs. We find that some features,

including numerical features, categorical features and textural

features can affect the popularity of API. By combining all

the features, we propose an approach for predicting future

popularity of APIs by linear regression model. We split

our data into three dataset and do experiment on each of

them. Comprehensive experiments on three datasets of real-

world APIs in ProgrammableWeb show the effectiveness and

feasibility of our method.

For future work, we plan to collect more time series records

of APIs, and try to find more features that may have an effect

on the popularity of API. We plan to discover the popularity

trends of these APIs. Besides, we are going to conduct more

research on inferring the impacts of other data sources, such

as social media.

The dataset that our experiment based on will be released

to the homepage of one of our authors5.
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