An Insider Threat Activity in a Software Security
Course

Daniel E. Krutz, Andrew Meneely, and Samuel A. Malachowsky
Rochester Institute of Technology
{dxkvse, axmvse, samvse} @rit.edu

Abstract—Software development teams face a critical threat
to the security of their systems: insiders. A malicious insider is
a person who violates an authorized level of access in a software
system. Unfortunately, when creating software, developers do not
typically account for insider threat. Students learning software
development are unaware of the impacts of malicious actors and
are far too often untrained in prevention methods against them. A
few of the defensive mechanisms to protect against insider threats
include eliminating system access once an employee leaves an
organization, enforcing principle of least privilege, code reviews,
and constant monitoring for suspicious activity.

At the Department of Software Engineering at the Rochester
Institute of Technology, we require a course titled Engineering of
Secure Software and have created an activity designed to prepare
students for the problem of insider threats. At the beginning of
this activity, student teams are given the task of designing a
moderately sized secure software system. The goal of this insider
is to manipulate the team into creating a flawed system design
that would allow attackers to perform malicious activities once
the system has been created. When the insider is revealed at
the conclusion of the project, students discuss countermeasures
regarding the malicious actions the insiders were able to plan or
complete, along with methods of prevention that may have been
employed by the team to detect the malicious developer.

In this paper, we describe the activity along with the results
of a survey. We discuss the benefits and challenges of the activity
with the goal of giving other instructors the tools they need to
conduct this activity at their institution. While many institutions
do not offer courses in computer security, this self-contained
activity may be used in any computing course to enforce the
importance of protecting against insider threats.

Keywords—Software Security, Software Engineering, Comput-
ing Education

I. INTRODUCTION

Organizations devote vast amounts of time and resources
protecting themselves against outside threats. These protection
mechanisms include but are not limited to firewalls, data
encryption, and defensive coding practices. A much more
difficult threat to protect against is one which comes from
within the company. An insider threat is a current or former
employee, business partner, or contractor who has access to
an organization’s data, network, source code, or other sensitive
information who may intentionally misuse this information and
negatively affect the availability, integrity, or confidentiality
of the organization’s information system. Examples of insider
attacks include data harvesting, abuse of privileges sabotage,
and masquerading attacks. Additionally, a user could act as an
insider threat and have no actual malicious intent. Inadvertent
use of computing resources or data could make a system

susceptible to attack, or could unintentionally release sensitive
data [6]. Insider threats are much more difficult to identify
since potential threats are often users of a system which they
themselves developed (potential leaving back doors and having
deep intimate knowledge of the system) while, as developers,
not being considered to be potential threats to the system [12].
Companies often choose mitigate the risk of insider threats
through the use of policies and regulations [7].

Far too often, software engineers are not prepared to deal
with fact that their co-workers, people who they should trust
as allies, are in fact potentially malicious users capable of
performing a wide range of destructive actions. In educational
environments, students typically either work alone, or with
teams — with instructors preaching the importance of team-
work and trust. While these concepts are important real-world
examples dictate that the opportunity for a security threat must
be considered.

At the Rochester Institute of Technology, we created an
upper division Engineering of Secure Software applications
course to help students understand how to incorporate proper
security protection practices when designing, creating, and
maintaining software. Some course topics include defensive
coding practices, deployment & distribution strategies, vul-
nerability assessments, and threat modeling. In this course,
we created an activity to help acclimate students with how
to understand, protect, and recognize insider threats. Students
teams are formed and students are given the task of designing a
small application and planning for proper security. One student
from each team is quietly pulled aside and told that they are the
insider threat or mole for their team. Their goal is to have their
team design an application containing a vulnerability which
the mole would be able to later use. After the activity, the
moles are revealed and a discussion takes place regarding how
the moles were able to create the vulnerability, if the team
recognized this vulnerability, and what could have been done
to prevent this insider threat.

The rest of the paper is organized as follows: Section II
describes the course including learning objectives. Section III
discusses how the activity was conducted. Section IV provides
student feedback about the project including quotes and post
activity survey analytics. Section V presents some related
works and Section VI discusses possible future work and
improvements to the activity. Section VII provides concluding
remarks about our work.



II. ABOUT THE COURSE

Primarily comprised of upper division Software Engineer-
ing students, the Engineering of Secure Software course' was
created in 2012 and is focused on instructing students in the
proper practices of design and creating secure software. The
only prerequisite is the Introduction to Software Engineering
course in which students are introduced to core concepts
in software engineering such as development methodologies,
team work in software development, basic testing principles,
and software design.

The course has a primary learning outcome of preparing
students to mitigate security threats in software systems and
processes. The focus is on proper methods of designing,
developing, testing, and maintaining secure software. While
the course is language-agnostic and focuses on principles and
practices, specific tools and technologies are used to reinforce
the learning objectives of the course. For instance, Microsoft’s
SDL Threat Modeling Tool? is used to instruct students on
the proper methods of designing the architecture of a secure
system. Specific Java-based examples are used to demonstrate
SQL injection attacks, log overflow attacks, hashing and salt,
and path traversal exploits. Short Vulnerability-of-the-Day
activities serve to introduce students to real world examples of
exploits and demonstrate the importance of software security
[11]. Students work in small teams on several course projects
including the creation of a web fuzz testing tool and a
case study which examines a real-world software project for
vulnerabilities.

While we do not expect all students taking the course to
become security experts, our goal is to instill fundamental
principles of secure software development in the students while
demonstrating its importance in the real world. Students are
graded on several criteria such as three exams, several short
projects, and brief in-class activities. Class size is typically
25-35 students and is a required course in the Software
Engineering major.

In the course, we also discuss several ways of protecting
against insider threats. While there is no easy or simple silver
bullet protection mechanism against insider threats, there are
some best practices which may be used to help alleviate
this risk. Some of these protection practices include properly
screening potential employees, implementing end point data
leak protection, monitoring databases & sensitive records, and
the proper use of rights management systems [15].

III. INSIDER THREAT ACTIVITY

In this section we describe the sample project, the activity
conducted by the students, provide example vulnerabilities
which the insider threats were able to create, and finally
describe goals of the post activity discussion.

A. Sample Project

To begin, students are told that they are being asked to
design a secure software system. In our course instances, we
asked them to design a student grading system, much like ones
which are typically used at many institutions. We selected this

Uhttp://www.se.rit.edu/~swen-331/
2www.microsoft.com/security/sdl/adopt/threatmodeling.aspx

example since we felt it was complex enough for students
to have to actively consider numerous possible vulnerabilities
and would allow for our insider threats to act maliciously, but
simple enough for teams to design it in a class meeting or
two. Additionally, we felt that students would be reasonably
familiar with a system of this type.

Some basic requirements for this system were: Students
should be able to view their grades, but not alter them or view
the grades of their classmates. Instructors should be able to
view the grades for all students, but only modify grades for
students in the specific courses they were teaching. School
administrators should be able to view and alter the grades
of all students, at any time. All users are required to access
the system using their username and password, and if any
they have forgotten their password, the system should send
a reminder to the person via email and allow them update
the password from that link. The application also needed
to be accessible from anywhere in the world using a basic
web connection. A non-functional requirement was that the
application database should be backed up on a nightly basis to
an off-site location. For debugging purposes, it was required
that all errors and user actions should be logged for system
administrators.

B. Activity

Once tstudents were given the basic requirements for their
system, student teams of 4-6 students are formed, as this is
often the size of groups in industry and has been found to be
conducive to student learning in previous research [8], [14].
Before the start of the activity, a subset students were emailed
asking them to be insider threats. They were asked to not
share this information with anyone and to act just like any
other member of the team. Their goal was to have their team
design a system that would leave the door open for them to act
maliciously in some manner. Examples included being able to
view other student’s grades view at a higher level of access,
or change data which they should not be able to modify.

Example sections of our courses were offered in a 50
minute long format with this activity spanning two class
periods. Teams were allowed the entire first class period to
work on designing their system while the instructor answered
any requirements specific questions the teams had. Teams were
then asked to work on the activity outside of class. At the
beginning of the second class meeting, teams were asked to
review their security design and make any last minute updates.
Teams were then informally polled to see how many felt their
system was secure. This serves to gauge the confidence each
team has in their design. Based on the confidence of the teams
and the instructor’s knowledge of each team’s design, the team
with the highest confidence and best design was asked to
briefly present their design to the class and talk about why
they felt it was secure. The class then asked questions about
the design and try to discover any vulnerabilities.

After this brief discussion, the insider threat student for
the presenting team is asked to make themselves public and
describe the vulnerability they had left in the system design.
The insider threats for other teams are then asked to expose
themselves and describe the vulnerability they introduced into
their team’s design as well.



While the insider threats added vulnerabilities in a variety
of ways, there were some commonalities in the methods
chosen to ensure the application was exploitable. Most often,
it was as simple as recommending poor security strategies to
leave vulnerabilities in the system. In some instances, insiders
would add a vulnerability into the team’s design between class
meetings which would not be caught during the review on the
second class meeting. This mimics the real world situation
of an insider adding malicious code into a project during
off hours or without the knowledge of the rest of the team.
Interestingly, insiders would often ensure that vulnerabilities
existed in a system by simply doing nothing. They would
notice their teammates leaving a vulnerability in the design
due to a simple but honest mistake, doing nothing to fix this
known issue.

C. Examples of Introduced Vulnerabilities

In order to provide some context regarding some of the
introduced vulnerabilities, we will explain some of them in
further detail and provide some examples of how they were
used within the activity.

Not Limiting Failed Login Attempts

Limiting the number of failed login attempts its an important
protection mechanism against brute force attacks. Without
this limitation, attackers may systematically try password
combinations until they achieve the correct password. This
type of attack has been successfully made against a wide
range of organizations, including Apple [13]. In one team, the
insider made the argument that users should not be limited
by their login attempts since this could be annoying to users
and could hurt their user experience with the application. The
team agreed and no limiting was done.

Publicly Saving Logs
A requirement of the system was to log all system errors
and actions taken by users. Attackers could use these error
logs to potentially gain information which could help them
compromise the system. Some of this could include call
stacks, information about how to create a log overflow, or
any other sensitive information which was output to the log
messages. Additionally, since the log files contained many
alterations make to the system, this could expose potentially
sensitive changes to malicious users such as the grades of
students. In one team, the insider argued that these logs
should be publicly available since it would provide easier
access to developers when troubleshooting issues. On another
team, they placed the generated log files outside of the trust
zone of the system, which would expose these files to outside
users. Their teams did not raise any objections to doing this.

Openly Transmitting Data Backups
A requirement was to backup the system database on a nightly
basis to an off-site location. In a properly designed system,
the database information would be encrypted before it leaves
the trust zone, or sent via a secure or encrypted transmission
so malicious users could not intercept the data being sent.
Several insiders made sure that this database backup file was
sent via insecure channels, meaning that it could have been

intercepted by a malicious or unintended party.

Use of Improper Cipher Techniques

Cipher techniques (which are covered in the second half of
the course) are a way of encrypting information so they may
not be deciphered by anyone but the intended parties. While
advanced cipher techniques such as AES and RSA continue
to provide high levels of security, older techniques such
as DES no longer provide an adequate level of protection
and can be broken with relative ease. In several groups, the
insider was able to convince their team to use DES or another
outdated cipher technique. This would have left the encrypted
information susceptible to attackers.

Storing Passwords in Source Code

Developers should not store passwords in the source code
of an application, even if it has been compiled. This creates
several potential problems including the ability of a malicious
user to reverse engineer the code to discover the user name
and password. Since passwords should be routinely changed,
altering them in compiled code is typically more difficult
and much more infrequently done. In several instances,
insider threats convinced their teams to store the database
login information in compiled code since they argued that
the information would be secure since it was compiled (an
inaccurate statement) and that the passwords did not need
to be updated (also inaccurate). This left the applications
not only vulnerable to reverse engineering, but in the event
a developer left the company, they would know that the
database login and password information was unlikely to be
changed making it susceptible to their attack. Interestingly,
one insider was able to convince their team to make the
login information be merely “root” and no password since
this would be simpler for development. Giving an application
root access with violates several security standards, including
the principle of least privilege and having no password at all
is bad for a variety of reasons.

Providing Too Many Privileges for User or Component
A basic principle of software security is the principle of least
privilege, or the granting of the minimum number of privileges
that an application needs to properly function [16]. Granting
more privileges than the application needs creates security
problems since individuals or software components could
intentionally or unintentionally use these extra privileges for
malicious reasons. In a few instances, insider threats observed
instances of too many privileges and chose not to disclose the
error, allowing it to propagate into future designs.

D. Post Activity Discussion and Goals

After the insiders were identified and the ensuing
discussion about what malicious activities could have been
performed on the software, a post-activity discussion takes
place. The goal of this discussion is to foster student thinking
about insiders, ways that insiders could maliciously act, and
prevention methods against them. This discussion should be
easy going to foster and encourage student led discussions
and to encourage free thinking among the students. Due to



the nature of the activity, there are a wide range of potentially
beneficial discussion topics. Some of these are outlined below.

Who Can Be Insider Threats?

Before the activity, many students thought of threats as being
people external to the organization, and did not consider
inside actors to be threats. Students who may have considered
the possibility may not have realized that these threats which
could be planned for. One potential outcome is a discussion of
who can be insider threats. Regardless of the role on the team,
each individual or group of individuals is a potential insider
threat who needs to be protected against. In our activities,
students discussed the various roles of teammates who were
insiders and how similar roles in real-world projects could be
hazardous.

What Malicious Actions did the Insiders Take?
Insiders conducted a wide variety of malicious actions in our
activity using many different methods — many with relative
ease. Students are encouraged to discuss the actions that
insiders took on their systems and what some of the negative
ramifications could have been. They are also encouraged to
significantly explore and analyze the negative ramifications
of the threats. As an example, in the situation where student
records were publicly exposed, consequences which may
not be immediately considered are the legal ramifications
involved and potential lawsuits by students with publicly
exposed grades. A related activity that could be done to
augment this discussion would be to ask students to explore
and report upon real-world examples of malicious actions
taken by insiders.

What Damage Did the Insiders Cause?
In our activity instances, insider threats would have typically
been able to inflict a significant amount of damage on
the software project. Understanding the possible negative
ramifications is a good way for students to realize the
importance of protecting against insider threats and to plan
for similar occurrences in their real-world development teams.

Did the Students Realize the Insiders Were Doing
Anything Wrong?
In our discussions, students often reported that they had at
least a feeling that the insiders were acting in a malicious
manner, but failed to stop them. Some reasons included not
wanting to create controversy, the feeling that security was
not a prominent area of concern, or that their teammate must
have known what they were doing. Points of discussion could
include warning signs of vulnerabilities being placed in a
system either for intentional or unintentional reasons, methods
of alerting teammates about potential issues in a constructive
manner and individual project ownership and empowerment.

How Could Thinking Like an Insider Help to Protect
Against Them?
Thinking like an insider is a good way to prevent against
them. If developers are always considering different ways
that their system can be compromised, they will be more
likely to develop their application using proper defensive

measures and to detect malicious actions by real inside threats.

What Could Have Been Done to Prevent Insider
Threats?
One of the most important discussion topics should be what
could have been done to prevent these insider threats (and
similar ones) from occurring in future projects. Students are
encouraged to discuss ways of preventing these threats from
occurring in real-world projects. Some discussed methods
include code reviews, internal accountability, maintaining an
open culture, increasing auditability, and analysis by outside
security auditors.

IV. STUDENT FEEDBACK

Students have expressed a significant amount of satisfaction
in this activity and it has contributed to their overall satisfaction
with the course. At the conclusion of the project, students
are asked to submit an anonymous survey asking them to
provide feedback regarding the project. Some of the questions
were based upon the Likert scale, while other asked students
to provide written feedback. Several of these questions and
student responses are shown in Table I. The survey has been
posed to students in the last three course offerings, all of which
have used this activity component. A total of 68 students from
these sections have chosen to respond.

These results indicate that the vast majority of students
not only enjoyed the activity, but would also recommend it
to a classmate as well. Additionally, most students felt that it
reassembled a project which they were likely to encounter in
the real world and were similar to tasks they were asked to
complete while on cooperative internships.

The following are samples of written feedback that have
been received:

“The surprise not only teaches the lesson but
leaves an impression. This is probably due to the
deception aspect of the activity.”

“It was really interesting to see how few peo-
ple were looking for an insider threat and many
threats went completely unnoticed. It showed that
we weren’t prepared to consider our classmates as
threats.”

“I liked how it showed me how easily insider
threat can destroy a project..”

“Being continually consciously aware of all pos-
sible security threats, for not all risks lie within the
implementation.”

“It might seem silly, but the first-hand experience
of having someone betray the team, even on an
insignificant level, leaves an impression that the same
could actually happen in the real world.”

This feedback indicates that students not only enjoyed the
activity, but felt that it was an effective learning mechanism
as well.



TABLE I: Student Responses

| Strongly Agree | Agree | Undecided | Disagree | Strongly Disagree

You enjoyed the activity 19 37 10 2 0
You learned a lot as a result of the activity 14 39 11 2 0
The activity better prepared you for insider threats 21 39 5 1 2
You feel you are more prepared to deal with an insider threat 16 38 9 5 0
You would be likely to recommend the activity to a friend 16 29 15 7 0

V. RELATED WORK

Numerous works have examined insider threats from a
general security perspective. Leyden [10] and Brancik [5] both
discussed the importance of protecting against insider threats
and the possible negative ramifications. Nostro et al. [12]
developed a process for insider threat detection and mitigation
using a variety of existing tools and new techniques with
the goal being to define the objectives of the attacker and
subsequently determining appropriate countermeasures. Other
works have discussed various interesting ways of detecting
insider threats; Almehmadi et al [2] investigated the use of
using physiological features to detect attackers and found that
an abnormal deviation in a user’s electrocardiogram amplitude
could properly predict an attack before it occurred.

This activity fully engages students in the learning process,
which is important as research has shown that students learn
better when they are actively engaged in the process [1]. Vari-
ous other learning techniques that use “active”, “collaborate”,
and “cooperative” learning techniques have been recommended

over the years [3], [4], [17], [18].

To our knowledge, this activity was the first of its kind
to introduce an insider threat into a software security class-
room activity. However, Krutz and Vallino [9] used a similar
activity to teach freshman seminar students about problematic
teammates. In this activity, moles were added to teams and
performed roles such as non-contributors, side trackers and
absentee team members. A post-activity discussion focused on
these problematic team members and how they can be properly
addressed. Creating an activity that was not only informative
but also enjoyable for the students is an important objective.

VI. FUTURE WORK

This project has been utilized in several sections of our
Engineering of Secure Software course and has been very
successful, but there are a few enhancements to the activity and
further data which may be collected. In future iterations, we
would like to further record and analyze the exploits created by
the insiders. This would not only be helpful for better planning
future offerings of this activity, but would likely be interesting
to researchers as well. Once an insider’s exploit is exposed
during the class discussion, a secondary activity could be for
the team to resolve that exploit like they would in a real-world
environment. This could include steps taken to mitigate the
exploit and measures which could be taken to ensure that a
similar exploit did not occur in the future.

Should instructors have more time to complete this activity,
a formal code inspection by the team before revealing the
insiders could be a beneficial activity, teaching the students
about the code inspections themselves and helping to solidify
their importance in detecting insider threats. If the team did

not identify the threats, this would help to demonstrate the
many challenges in detecting an insider threat.

When conducting this activity, we chose to give the insiders
a significant amount of freedom in deciding what kind of
threats to add to the system since a large amount of variability
existed between each team’s design and the dynamics of the
team. However, some insiders have expressed the desire for
more direction on the types of threats they should be looking
to create. Future instructors should take this into consideration,
but also remember to provide balance: too much direction
which would inhibit the creativity and ability of the insiders
to create threats.

VII. CONCLUSION

Organizations suffer from insider threats on a constant basis
— posing risks that could impact them not only monetarily,
but also through the loss of invaluable and often private data.
Some of this harm is irreversible for organizations from both
a data and customer trust perspective. Unfortunately, students
are typically unprepared to deal with this notion and do not
understand that it can occur, and how it may occur.

We have described a novel and innovative activity to
instruct software security students about the dangers of insider
threats and some of the damaging ramifications such an actor
could have on a system. Students have expressed their satis-
faction with the activity from both an enjoyment and learning
perspective. We encourage instructors at other institutions to
use this activity in their security courses as well.

REFERENCES

(1]
(2]

7 Principles for Good Practice in Undergraduate Education. 1989.

A. Almehmadi and K. El-Khatib. On the possibility of insider threat
detection using physiological signal monitoring. In Proceedings of the
7th International Conference on Security of Information and Networks,
SIN ’14, pages 223-223, New York, NY, USA, 2014. ACM.

T. Bailey and J. Forbes. Just-in-time teaching for ¢s0. SIGCSE Bull.,
37(1):366-370, Feb. 2005.

C. Bonwell and J. Eison. Active Learning: Creating Excitement in the
Classroom. Wiley, 1991.

K. Brancik. Insider computer fraud an in-depth framework for detecting
and defending against insider it attacks, 2008.

R. F. T. Dawn M. Cappelli, Andrew P. Moore. The cert guide to insider
threats: How to prevent, detect, and respond to information technology
crime. In The CERT Guide to Insider Threats: How to Prevent, Detect,
and Respond to Information Technology Crime, 2012.

(3]
(4]
[5]

(6]

[71 G. Doss and G. Tejay. Developing insider attack detection model: A
grounded approach. In Intelligence and Security Informatics, 2009. I1SI

’09. IEEE International Conference on, pages 107-112, June 2009.

J. Guo. Group projects in software engineering education. J. Comput.
Sci. Coll., 24(4):196-202, Apr. 2009.

D. Krutz and J. Vallino. Experiencing disruptive behavior in a team

using moles. In Frontiers in Education Conference, 2013 IEEE, pages
1492-1495, Oct 2013.

(8]



[10]

(11]

[12]

[13]

[14]

. J. Leyden. Geeks, squatters and saboteurs threaten corporate secu-
rity. http://www.theregister.co.uk/2005/12/15/mcafee_internal_security_
survey/.

A. Meneely and S. Lucidi. Vulnerability of the day: Concrete demon-
strations for software engineering undergraduates. In Proceedings of
the 2013 International Conference on Software Engineering, ICSE *13,
pages 1154-1157, Piscataway, NJ, USA, 2013. IEEE Press.

N. Nostro, A. Ceccarelli, A. Bondavalli, and F. Brancati. Insider threat
assessment: A model-based methodology. SIGOPS Oper. Syst. Rev.,
48(2):3-12, Dec. 2014.

S. Oliver.  Appleinsider.  http://appleinsider.com/articles/14/09/25/

[15]

[16]

[17]

researcher-accuses-apple-of-ignoring-icloud- brute- force-attack-for-6- months{,l 8]

timestamp = 2014.11.20, September 2014.

D. Petkovic, G. Thompson, and R. Todtenhoefer. Teaching practical
software engineering and global software engineering: evaluation and

comparison. SIGCSE Bull., 38(3):294-298, June 2006.

P. Rubens. Ten ways to protect your network from insider threats. http:
/Iwww.enterprisenetworkingplanet.com/netsecur/article.php/10952_
3882886_2/Ten- Ways-to-Protect- Your-Network- From- Insider- Threats.
htm, 2010.

J. H. Saltzer and M. D. Schroeder. The protection of information in
computer systems. Proceedings of the IEEE, 63(9):1278-1308, 1975.

D. Schweitzer and W. Brown. Interactive visualization for the active
learning classroom. In Proceedings of the 38th SIGCSE Technical
Symposium on Computer Science Education, SIGCSE ’07, pages 208—
212, New York, NY, USA, 2007. ACM.

T. Sutherland and C. Bonwell. Using Active Learning in College
Classes: A Range of Options for Faculty: New Directions for Teaching
and Learning, Number 67. J-B TL Single Issue Teaching and Learning.
Wiley, 1996.



